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Abstract

Notes taken from Matan Prsma math seminars and also while reading
about Bilinear Pairings. Usually while reading papers and books I take
handwritten notes, this document contains some of them re-written to
LaTeX.

The notes are not complete, don’t include all the steps neither all the
proofs. I use these notes to revisit the concepts after some time of reading
the topic.
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Rational functions

Let E/k be an elliptic curve defined by: y? = 23 + Az + B.

set of polynomials over E: k[E]:=k[z,y]/(y* — 2 — Az — B =0)

we can replace y? in the polynomial f € k[E] with 23 + Az + B

canonical form: f(z,y)=v(z)+ yw(x) for v,w € k[z]

conjugate: [ =uv(z) — yw(z)


https://sites.google.com/site/matanprasma/artifact

norm: N;=f f=uv(z)?—-1y?w(x)?=0v(z)? - (22 + Az + B)w(x)* € k[z] C
k[E]
we can see that Ng, = Ny - N,

set of rational functions over E: k(FE) :=k[E] x k[E]/ ~
For r € k(E) and a finite point P € E(k), r is finite at P iff
f

Jr == with f,g € k[E], s.t. g(P) #0
g

We define r(P) = L) Otherwise, 7(P) = co.
Remark: r = 5 k(E), r= 5 =19 — I3 thys

)y @) w@)
TNy | Ny UN,@)

canonical form of r(z, y)
degree of f: Let f € k[E], in canonical form: f(z,y) = v(z) + yw(x),
deg(f) := max{2 - deg,(v),3 + 2 - deg,(w)}
For f,g € k[E]:
i. deg(f) = deg(Ny)
ii. deg(f -g) = deg(f) + deg(g)
Def 1.1. Let r = £ e k(E)
i. if deg(f) < deg(g): r(0)=0
ii. if deg(f) > deg(g) : r is not finite at 0

iii. if deg(f) = deg(g) with deg(f) even:
f’s canonical form leading terms az?
¢’s canonical form leading terms bx?
abek*, d= 29U st r(0) = ¢

iv. if deg(f) = deg(g) with deg(f) odd
f’s canonical form leading terms ax
¢’s canonical form leading terms bz

a,bek”, deg(f) = deg(g) =3 +2d, set 7(0) = ¢

d

1.1 Zeros, poles, uniformizers and multiplicities

r € k(F) has a zeroin P € Eif r(P) =0
r € k(E) has a pole in P € E if r(P) is not finite.



uniformizer: Let P € FE, uniformizer: rational function v € k(E) with
w(P) =0if Vr € k(E)\ {0}, 3d € Z, s € k(E) finite at P with s(P) # 0
s.t.

r=u-s

order: Let P € E(k), let u € k(EF) be a uniformizer at P. For r € k(E) \ {0}
being a rational function with r = u¢ - s with s(P) # 0,00, we say that r has
order d at P (ordp(r) = d).

multiplicity: multiplicity of a zero of r is the order of r at that point, multi-
plicity of a pole of r is the order of r at that point.
if P € E(k) is neither a zero or pole of 7, then ordp(r) =0 (= d, r = us).

Multiplicities, from the book ”Elliptic Tales” (p.69), to provide
intuition

Factorization into linear factors: p(x) =c-(x —ay1) -+ (z — aq)

d: degree of p(x), a; € k

Solutions to p(x) = 0 are & = aq,...,aq (some a; can be repeated)

eg.: p(x) = (x —1)(z — 1)(x — 3), solutions to p(z) =0: 1,1,3

x = 1 is a solution to p(z) = 0 of multiplicity 2.

The total number of solutions (counted with multiplicity) is d, the degree
of the polynomial whose roots we are finding.

2 Divisors

Def 2.1. Divisor

Def 2.2. Degree & Sum
deg(D) = Z np

PeE(k)

sum(D) = Z n, - P

PeE(k)
The set of all divisors on E forms a group: for D = } p gy np[P] and

D' = ZPGE(k) mp[P],

D+D'= Y (np+mp)[P
PcE(k)

Def 2.3. Associated divisor

div(r) = Z ordp(r)[P]

PeE(k)



Observe that
div(rs) = div(r) + div(s)
div(%) = div(r) — div(s)

Observe that
ZP € E(k)ordp(r)-P=0

Def 2.4. Support
> np[P], VP € E(k) | np #0
P

Def 2.5. Principal divisor iff deg(D) = 0 and sum(D) =0
D ~ D' iff D — D’ is principal.

Def 2.6. Evaluation of a rational function (function r evaluated at D)

r(D) = [[r(P)™

3 Welil reciprocity

Thm 3.1. (Weil reciprocity) Let E/k be an e.c. over an alg. closed field. If
r, s € k\ {0} are rational functions whose divisors have disjoint support, then

r(div(s)) = s(div(r))

Proof. (todo)

4 Generic Weil Pairing

Let E(k), with k of char p, n s.t. p{n.
k large enough: E(k)[n] = E(k) = Z,, ® Z,, (with n? elements).
For P,Q € E[n],
Dp ~[P] - [0
Dq ~ [Q] - [0]

We need them to have disjoint support:

Dp ~ [P] - [0]
Dy ~[Q+T]—[T]

AD = Dq — D =[Q] - [0] - [Q+ T] +[T]



Note that nDp and nDg are principal. Proof:

nDp = n[P] — n[O]
deg(nDp)=n—n=20
sum(nDp) =nP —n0O =0
(nP =0 bes. P is n-torsion)

Since nDp, nDg are principal, we know that fp, fq exist.
Take

fp : dZU(fp) = ’I’LDP
fq :div(fq) =nDq

We define
en(p.Q) = 71D)

~ fq(Dp)

Remind: evaluation of a rational function over a divisor D:
D =Y np[P]
r(D) = [[r(P)"

If Dp = [P+ S]—[S], Do =[Q—T]— [T] what is e, (P, Q)?

fP@Q@+T)
fp(T)

fo(P+S)

en(P,Q) = /

with S # {0, P,—Q, P — Q}.

5 Properties

6 Exercises

An Introduction to Mathematical Cryptography, 2nd Edition - Section 6.8. Bi-
linear pairings on elliptic curves

6.29. div(R(z) - S(x)) = div(R(z)) + div(S(x)), where R(z), S(x) are rational
functions.
proof:
Norm of f: Ny = f - f, and we know that Ny, = Ny - N, V k[E],
then
deg(f) = degs(Ny)



and
deg(f - g) = deg(f) + deg(g)

Proof:
deg(f - g) = degz(Nyg) = degs(Ny - Ng)

= deg.(Ny) + deg.(Ny) = deg(f) + deg(g)

So, VP € E(k), ordp(rs) = ordp(r) 4+ ordp(s).
As div(r) = Y pepge ordp(r)[P], div(s) = 3 ordp(s)[P].

So,
div(rs) = Z ordp(rs)[P]

= Z ordp(r)[P] + Z ordp(s)[P] = div(r) + div(s)

6.31.
em(P, Q) = em(Q, P)"'VP,Q € Elm]

Proof: We know that e, (P, P) = 1, so:
l=en(P+Q,P+Q)=en(P,P)-en(P,Q) en(Q,P)-en(Q,Q)
and we know that e, (P, P) = 1, then we have:
l=en(P,Q) em(Q,P)

— em(P;Q) = em(va)_l
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