Notes on FRI

arnaucube

February 2023

Abstract
Notes taken from [Vincenzo Iovino| [I] explanations about FRI [2], [3],

[].
These notes are for self-consumption, are not complete, don’t include
all the steps neither all the proofs.

An implementation of FRI can be found at
https://github.com/arnaucube/fri-commitment, [5].

Contents

I Prelminarics
I1.1 General degree d test|. oL

2 FRI protocoll

I3 FRI as polynomial commitment scheme|

1 Preliminaries

1.1 General degree d test

—_

ot NN

R
Query at points {z;}3™!, 2 (with rand z € F). Interpolate p(z) at {f(z;)}3+"
to reconstruct the unique polynomial p of degree d such that p(z;) = f(x;) Vi =

1,...,d+1.

V checks p(z) = f(z), if the check passes, then V is convinced with high

probability.

This needs d + 2 queries, is linear, O(n). With FRI we will have the test in

O(logd).

https://sites.google.com/site/vincenzoiovinoit/
https://github.com/arnaucube/fri-commitment

2 FRI protocol

Allows to test if a function f is a poly of degree < d in O(logd).
Note: "P sends f(x) to V7, ”sends”, in the ideal IOP model means that all
the table of f(x) is sent, in practice is sent a commitment to f(x).

2.1 Intuition

V wants to check that two functions g, h are both polynomials of degree < d.
Consider the following protocol:

1. Vsends o € F to P. P sends f(z) = g(x) + ah(z) to V.
2. P sends f(z) = g(x) + ah(x) to V.
3. V queries f(r), g(r), h(r) for rand r € F.

4. V checks f(r) = g(r) + ah(r). (Schwartz-Zippel lema). If holds, V can be
certain that f(z) = g(x) + ah(z).

5. P proves that deg(f) < d.

6. If V is convinced that deg(f) < d, V believes that both g, h have deg < d.

With high probablility, o will not cancel the coeffs with deg > d + 1.

Let g(x) = a- 2™, h(z) =b-29t1, and set f(x) = g(x) + ah(z). Imagine
that P can chose a such that ax¢t! 4« -bz?*t! = 0, then, in f(z) the coefficients
of degree d + 1 would cancel.

Here, P proves g, h both have deg < d, but instead of doing 2-(d+2) queries
(d+ 2 for g, and d + 2 for h), it is done in d + 2 queries (for f). So we halved
the number of queries.

2.2 FRI-LDT

FRI low degree testing.

Both P and V have oracle access to function f.
V wants to test if f is polynomial with deg(f) < d.
Let fo(z) = f(x).

Each polynomial f(x) of degree that is a power of 2, can be written as

flz) = fH(@?) +aff(2?)

deg(f)
2

for some polynomials f¥, f® of degree , each one containing the even and

odd degree coefficients as follows:

dt1 dat1
2 2

1 1
fL(x) = Z CQimia fR(x) = Z 02i+1{bi
0 0

eg. for f(x) =a*+ 23+ 22+ 2+ 1,

fHa) =2+ +1 _ pL2 CpR(.2
R =241 }f(x)—f(w)ﬂf(x)
=@+ @) +1+z (%) +1)

=t 422 +1+22+2

Proof generation (Commitment phase) P starts from f(z), and for i = 0
sets fo(z) = f(2).
1. Vi€ {0,log(d)}, with d = deg f(x),
P computes fZ(x), ff(x) for which
filz) = f (@) + o ff(2?) (eq. A;)
holds.
2. V sends challenge o; € F
3. P commits to the random linear combination f;;1, for
firr(@) = fH(2) + aif i (2) (eq. By)

4. P sets fi(z) := fix1(x) and starts again the iteration.

Notice that at each step, deg(f;) halves.

This is done until the last step, where fL(z), ff(z) are constant (degree 0
polynomials). For which P does not commit but gives their values directly to
V.

(Query phase) P would receive a challenge z € D set by V (where D
is the evaluation domain, D € F), and P would open the commitments at

{zzi, —221} for each step i. (Recall, ”opening” means that would provide a
proof (MerkleProof) of it).

Data sent from P to V

Commitments: {Comm(f;) éog(d)
eg. {Comm(fo), Comm(f1), Comm(f2), ..., Comm(fioga))}

Openings: {fi(z%), fi(—(z*)}y
for a challenge z € D set by V
eg. fo(2), fo(=2), f1(z%), f1(=27), f2(z*), fa(=2"), fa(=®), f3(=2%), ...

Constant values of last iteration: {fZ, f{}, for k = log(d)

Verification V receives:

Commitments: Comm/(f;), Vi € {0,log(d)}

Openings: {0, 0/} = {fi(z%), fi(—(z*))}, Vi € {0,log(d)}
Constant vals: {ff, £}

For all i € {0,log(d)}, V knows the openings at 2% and —(zQi) for
Comm(fi(x)), which are o; = f;(2?") and o, = f;(—(2%")) respectively.
V, from (eq. A;), knows that

fi(x) = fF(2®) + 2 f(2?)

should hold, thus
filz) = FE(22) + 2 fF(2%)

where f;(2) is known, but fF(22), fF(2?) are unknown. But, V also knows the
value for f;(—z), which can be represented as

fi(=2) = fF(2%) = 2£(2%)

(note that when replacing = by —z, it loses the negative in the power, not in
the linear combination).
Thus, we have the system of independent linear equations

filz) = FL () + 2f4(2?)
fi=2) = f£(z%) — 2 £ (2%)

for which V will find the value of fF (22), ffi(zzi). Equivalently it can be

represented by o
(0 2) () - (52)

where V will find the values of flL(z2), flR(zz) being

2ty fi(2) + fi(=2)
i) = LA
| HEQ) ()
(e = HEL A

Once, V has computed fF (2;21‘)7 fiR(zzi), can use them to compute the linear
combination of

fin(22) = FEGE) + i fR ()

obtaining then f;1(z%). This comes from (eq. B;).

Now, V checks that the obtained fZ-H(zT) is equal to the received opening
0i+1 = fit1 (22) from the commitment done by P. V checks also the commitment
of Comm(fi;1(x)) for the opening 0;11 = fiy1(2%).

If the checks pass, V is convinced that fi(x) was committed honestly.

Now, sets ¢ := i+ 1 and starts a new iteration. , ‘

For the last iteration, V checks that the obtained f¥(2%"), f (%) are equal
to the constant values {ff, f{'} received from P.

It needs log(d) iterations, and the number of queries (commitments + open-
ings sent and verified) needed is 2 - log(d).

2.3 Parameters

P commits to f; restricted to a subfield Fy C F. Let 0 < p < 1 be the rate of
the code, such that
‘FO| = p_l .d

Thm 2.1. For § € (0,1 —,/p), we have that if V accepts, then w.v.h.p. (with
very high probability) A(fo, p?) < 6.

3 FRI as polynomial commitment scheme

This section overviews the trick from [4] to convert FRI into a polynomial com-
mitment.

Want to check that the evaluation of f(x) at r is f(r), which is equivalent
to proving that 3 @ € F[x] with deg(Q) = d — 1, such that

f@) = flr)=Q() (z —7)

note that f(z) — f(r) evaluated at r is 0, so (z — r)|(f(z) — f(r)), in other
words (f(z) — f(r)) is a multiple of (z — r) for a polynomial Q(x).

Let us define g(z) = ij

Prover uses FRI-LDT to commit to g(x), and then prove w.v.h.p that
deg(g) <d—1 (= A(g, p*~ ' <9).

Prover was already proving that deg(f) < d.

Now, the missing thing to prove is that g(z) has the right shape. We can
relate g to f as follows: V does the normal FRI-LDT, but in addition, at the
first iteration: V has f(z) and g(z) openings, so can verify

9(2) = (f(2) = f(r)) - (z = 1)}

References

[1] Vincenzo Iovino. https://sites.google.com/site/vincenzoiovinoit/.

https://sites.google.com/site/vincenzoiovinoit/

[2] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast
reed-solomon interactive oracle proofs of proximity, 2018. https://eccc.
weizmann.ac.il/report/2017/134/\

[3] Ulrich Habock. A summary on the fri low degree test. Cryptology ePrint
Archive, Paper 2022/1216, 2022. https://eprint.iacr.org/2022/1216.

[4] Alexander Vlasov and Konstantin Panarin. Transparent polynomial commit-
ment scheme with polylogarithmic communication complexity. Cryptology
ePrint Archive, Paper 2019/1020, 2019. https://eprint.iacr.org/2019/
1020.

[5] https://github.com/arnaucube/fri-commitment!

https://eccc.weizmann.ac.il/report/2017/134/
https://eccc.weizmann.ac.il/report/2017/134/
https://eprint.iacr.org/2022/1216
https://eprint.iacr.org/2019/1020
https://eprint.iacr.org/2019/1020
https://github.com/arnaucube/fri-commitment

	Preliminaries
	General degree d test

	FRI protocol
	Intuition
	FRI-LDT
	Parameters

	FRI as polynomial commitment scheme

