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Abstract

Notes taken while reading about HyperNova [I] and CCS[2].

Usually while reading papers I take handwritten notes, this document
contains some of them re-written to LaTeX.

The notes are not complete, don’t include all the steps neither all the
proofs.

Thanks to George Kadianakis| for clarifications, and the authors |Sri-
nath Setty and /Abhiram Kothapalli for answers on chats and twitter.
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1 CCS

1.1 RI1CS to CCS overview
R1CS instance Sgics = (m,n,N,l, A, B,C)

N DN =

SN

where m,n are such that A € F™*", and [ such that the public inputs

x € FL. Also z = (w,1,z) € F", thus w € F*~~1,

CCS instance Sceos = (m,n,N,l,t,q,d, M, S, c)

where we have the same parameters than in Sr1cg, but additionally:

t=|M]|, ¢ = |c| = |S|, d= max degree in each variable.

R1CS-to-CCS parameters n=n, m=m, N=N,l=1,t=3,q=2,d=

2, M ={A,B,C}, S={{0, 1}, {2}}, c={1,-1}


https://twitter.com/asn_d6
https://twitter.com/srinathtv
https://twitter.com/srinathtv
https://twitter.com/abhiramko

The CCS relation check:

q—1
> e Ojes,Mj-2==0

=0

where z = (w,1,z) € F™.
In our R1CS-to-CCS parameters is equivalent to

co - ((Mpz) o (My2)) 4+ c1 - (Maz) ==0
=1 ((4z) o (B2))+ (-1)- (Cz) ==
= ((4z) o (Bz)) — (Cz) ==
which is equivalent to the R1CS relation: Azo Bz == Cz
An example of the conversion from R1CS to CCS implemented in SageMath
can be found at
https://github.com/arnaucube/math/blob/master /rlcs-ccs.sage.
Similar relations between Plonkish and AIR arithmetizations to CCS are

shown in the CCS paper [2], but for now with the R1CS we have enough to see
the CCS generalization idea and to use it for the HyperNova scheme.

1.2 Committed CCS

Rcces instance: (C)x), where C' is a commitment to a multilinear polynomial
in s’ — 1 variables.
Sat if:

i. Commit(pp,w) = C

iyl (Hjesi (Zye{0,1}logm M; (2, y) 'E(iy)))
where 3(y) = (w, 1,x)(z) Vz € {0,1}*

1.3 Linearized Committed CCS

Ricccos instance: (C,u,x,7,v1,...,v;), where C is a commitment to a multi-
linear polynomial in s’ — 1 variables, and u € F, x € F!, r € F*, v; € F Vi € [t].
Sat if:

i. Commit(pp, w) =C

i Vi € [t], v =Y, q00y Mi(ry) - Z(y)
where Z(y) = (w,u,x)(z) Vz € {0,1}*


https://github.com/arnaucube/math/blob/master/r1cs-ccs.sage

2 Multifolding Scheme for CCS

Recall sum-check protocol notation: C' <+ (P, V(r))(g,l,d,T) means

T= Z Z Z g(z1,29,...,27)

21€{0,1} z2€{0,1} z;€{0,1}

where g is a [-variate polynomial, with degree at most d in each variable, and
T is the claimed value.

Let s =logm, s’ = logn.

1.V P:yel'F, gl Fs
2. Vrl e T

3. V < P: sum-check protocol:

c+ (P,V(r)(g,s,d+1, Z v wy)

JE[t]
T

(in fact, T = (Zje[t] A ) T Q) = Eje[t] v ;)
=0
where:

g(@) = [ Y4 Li(@) |+ Q(a)
JE[t] CCCS check

LCCCS check

for LCCCS: Lj(x) := éq(ry, ) - Z M;(z,y) - z1(y)
yG{O,l}SI

this is the check from LCCCS

q

for CCCS: Q(z) ==eq(B,2) - | Y i [T | D Mj(a,y) %)

=1 jeSi \ye{0,1}

this is the check from CCCS
Notice that

vi= Y. My -Zy) = Y. Lj@)

ye{0,1}¢ x€{0,1}¢



4. P=V: ((61,...,0¢),(01,...,0¢)), where Vj € [t],

o=, My AW
y€e{0,1}¢
b= D M(rhy) %)
96{071}5/
where o;, 8; are the checks from LCCCS and CCCS respectively with

)
T =T

5. V: €1 < évq(rz7rlw)7 €2 évQ(B?T;)
check:

q
j t4+1

c= ny]elaj—i—'y"' €2 Zci- H o

JE[t] i=1 JES;

which should be equivalent to the g(z) computed by V| P in the sum-check
protocol.

6. VP:pelF

7. V, P: output the folded LCCCS instance (C’,w',x',r.,v],...,v;), where
Vi € [t]:

O« Ci+p-Cy
wWiutp-1

X' X1+ pxo
vl oi+p-b;

8. P: output folded witness: W’ < w1 + p - Wa.

Multifolding flow:



Prover Verifier

veF, pelFs

{% rl € F?
sum-check prove ¢, TSC
\ sum-check verify
compute {,}, {6,} ¥j € [1 %
verify ¢ with {o;},{6,} relation
/ peRF

fold LCCCS instance fold LCCCS instance
ﬁ _ ﬁ
fold w
ﬁ

Now, to see the verifier check from step 5, observe that in LCCCS, since w
satisfies,

vi= > M(rs,y) A

ye{0,1}’

z€{0,1}# ye{0,1}¢
Lj(z)
= Y Ljx)
z€{0,1}*

Observe also that in CCCS, since w satisfies,

():Zlci. Il > M@y =

JESi \ye{o0,1}+

q(=x)

we have that

ax)= Y eq(X.a)-qfo)

z€{0,1}¢
is multilinear, and can be seen as a Lagrange polynomial where coefficients are
evaluations of ¢(z) on the hypercube.



For an honest prover, all these coefficients are zero, thus G(X) must neces-
sarily be the zero polynomial. Thus G(8) = 0 for 3 € F=.

0=GB) = Y eqlBa) q)

z€{0,1}*
a(x)
= > aBa)d a [l X My 2w
z€{0,1}s i=1 JE€Si \ye{0,1}¢
Q(=)
= Y Q)
z€{0,1}*

Note: notice that this past equation is related to Spartan paper [3], lemmas 4.2 and
4.3, where instead of

q —_—
a@) => e [] > M(z,y) - Za(y)
=1

JESi \ye{0,1}

for our R1CS example, we can restrict it to just Mg, M1, M2, which would be

:< 2 MVO(W)'?(@/))’( > ’M(m,w-z(y))— S Ma(ny) Ew)

ye{0,1}s ye{0,1}s ye{0,1}3

and we can see that g(z) is the same equation Fy,(x) that we had in Spartan:

I3
—~
<
~

ye{0,1}s ye{0,1}° ye{0,1}°

Eo(x)=( > g(fr,y)f(y))( > J§(ﬂc,y)-%’(y)) > C(zy)-z

where
Qiot)= > Fio(x) ég(t,z) =0

ze{0,1}5

and V checks Q;,(7) = 0 for 7 €7 F$, which in HyperNova is G(8) = 0 for 3 € Fs.
Qio() is a zero-polynomial (G(+) in HyperNova), it evaluates to zero for all points
in its domain iff Fw() evaluates to zero at all points in the s-dimensional boolean
hypercube.

Spartan «— HyperNova
T+— 0
Fio(z) +— q(z)
Qio(T) «— G(B)
So, in HyperNova

0= 3 Qu= Y ) q@

xe€{0,1}5 x€{0,1}5




Comming back to HyperNova equations, we can now see that

c=g(r,)
= | XA L) | +4Q)
JEt]

Li(ry,) RN

—_——f
o e Y [] 6

JElt] i€lg] JES:

I
7

where e; = éq(ry, 7)) and es = eq(B3,rL).
Which is the check that V' performs at step 5.

A Appendix: Some details

This appendix contains some notes on things that don’t specifically appear in the
paper, but that would be needed in a practical implementation of the scheme.

A.1 Matrix and Vector to Sparse Multilinear Extension

Let M € F™*™ be a matrix. We want to compute its MLE

M(z1,...,2) = Z M(e) - éq(z, e)

ec{0,1}

We can view the matrix M € F™*™ as a function with the following signa-

ture:
M(-):{0,1}* x {0,1}* > F

where s = [logm], s = [logn].
An entry in M can be accessed with a (s + s’)-bit identifier.

eg.:
(1 2 3 3%
M‘(4 5 6>€]F
m=3, n=2, s=[log3]=2, s =[log2]=1
So, M(z,y) = x, where x € {0,1}*, y € {0,1}*, z € F

M(00,0) M(01,0) M{(10,0) .
M= <M(OO,1) M(01,1) M(10, 1)) € F

This logic can be defined as follows:



Algorithm 1 Generating a Sparse Multilinear Polynomial from a matrix

set empty vector v € (index: Z, x : FSXS')
for i to m do
for j ton do
if Mi,j 7& 0 then
v.append({index : i-n+j, = : M, ;})
end if
end for
end for
return v > v represents the evaluations of the polynomial

Once we have the polynomial, its MLE comes from

M(xy,... wepe) = Y. M(e) égla,e)
ec{0,1}5+

M(X) € F[X1,...,X,]

Multilinear extensions of vectors Given a vector u € F™, the polynomial u
is the MLE of u, and is obtained by viewing v as a function mapping (s = logm)

u(z) : {0,1}° = F

t(x, e) is the multilinear extension of the function u(x)

w(ry, ..., xs) = Z u(e) - éq(z, e)

ec{0,1}¢
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