
Notes on HyperNova

arnaucube

May 2023

Abstract

Notes taken while reading about HyperNova [1] and CCS[2].
Usually while reading papers I take handwritten notes, this document

contains some of them re-written to LaTeX.
The notes are not complete, don’t include all the steps neither all the

proofs.
Thanks to George Kadianakis for clarifications, and the authors Sri-

nath Setty and Abhiram Kothapalli for answers on chats and twitter.

Contents

1 CCS 1
1.1 R1CS to CCS overview . 1
1.2 Committed CCS . 2
1.3 Linearized Committed CCS . 2

2 Multifolding Scheme for CCS 3

A Appendix: Some details 7
A.1 Matrix and Vector to Sparse Multilinear Extension 7

1 CCS

1.1 R1CS to CCS overview

R1CS instance SR1CS = (m,n,N, l, A,B,C)
where m,n are such that A ∈ Fm×n, and l such that the public inputs
x ∈ Fl. Also z = (w, 1, x) ∈ Fn, thus w ∈ Fn−l−1.

CCS instance SCCS = (m,n,N, l, t, q, d,M, S, c)
where we have the same parameters than in SR1CS , but additionally:
t = |M |, q = |c| = |S|, d= max degree in each variable.

R1CS-to-CCS parameters n = n, m = m, N = N, l = l, t = 3, q = 2, d =
2, M = {A,B,C}, S = {{0, 1}, {2}}, c = {1,−1}

1

https://twitter.com/asn_d6
https://twitter.com/srinathtv
https://twitter.com/srinathtv
https://twitter.com/abhiramko

The CCS relation check:

q−1∑
i=0

ci · ⃝j∈SiMj · z == 0

where z = (w, 1, x) ∈ Fn.
In our R1CS-to-CCS parameters is equivalent to

c0 · ((M0z) ◦ (M1z)) + c1 · (M2z) == 0

=⇒1 · ((Az) ◦ (Bz)) + (−1) · (Cz) == 0

=⇒((Az) ◦ (Bz))− (Cz) == 0

which is equivalent to the R1CS relation: Az ◦Bz == Cz
An example of the conversion from R1CS to CCS implemented in SageMath

can be found at
https://github.com/arnaucube/math/blob/master/r1cs-ccs.sage.

Similar relations between Plonkish and AIR arithmetizations to CCS are
shown in the CCS paper [2], but for now with the R1CS we have enough to see
the CCS generalization idea and to use it for the HyperNova scheme.

1.2 Committed CCS

RCCCS instance: (C, x), where C is a commitment to a multilinear polynomial
in s′ − 1 variables.

Sat if:

i. Commit(pp, w̃) = C

ii.
∑q

i=1 ci ·
(∏

j∈Si

(∑
y∈{0,1}log m M̃j(x, y) · z̃(y)

))
where z̃(y) = ˜(w, 1, x)(x) ∀x ∈ {0, 1}s′

1.3 Linearized Committed CCS

RLCCCS instance: (C, u, x, r, v1, . . . , vt), where C is a commitment to a multi-
linear polynomial in s′ − 1 variables, and u ∈ F, x ∈ Fl, r ∈ Fs, vi ∈ F ∀i ∈ [t].

Sat if:

i. Commit(pp, w̃) = C

ii. ∀i ∈ [t], vi =
∑

y∈{0,1}s′ M̃i(r, y) · z̃(y)

where z̃(y) = ˜(w, u, x)(x) ∀x ∈ {0, 1}s′

2

https://github.com/arnaucube/math/blob/master/r1cs-ccs.sage

2 Multifolding Scheme for CCS

Recall sum-check protocol notation: C ← ⟨P, V (r)⟩(g, l, d, T) means

T =
∑

x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xl∈{0,1}

g(x1, x2, . . . , xl)

where g is a l-variate polynomial, with degree at most d in each variable, and
T is the claimed value.

Let s = logm, s′ = log n.

1. V → P : γ ∈R F, β ∈R Fs

2. V : r′x ∈R Fs

3. V ↔ P : sum-check protocol:

c← ⟨P, V (r′x)⟩(g, s, d+ 1,
∑
j∈[t]

γj · vj︸ ︷︷ ︸
T

)

(in fact, T = (
∑

j∈[t] γ
j · vj)+γt+1 ·Q(x)︸ ︷︷ ︸

=0

) =
∑

j∈[t] γ
j · vj)

where:

g(x) :=

∑
j∈[t]

γj · Lj(x)


︸ ︷︷ ︸

LCCCS check

+ γt+1 ·Q(x)︸ ︷︷ ︸
CCCS check

for LCCCS: Lj(x) := ẽq(rx, x) ·


∑

y∈{0,1}s′

M̃j(x, y) · z̃1(y)

︸ ︷︷ ︸
this is the check from LCCCS



for CCCS: Q(x) :=ẽq(β, x) ·


q∑

i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)


︸ ︷︷ ︸

this is the check from CCCS


Notice that

vj =
∑

y∈{0,1}s′

M̃j(r, y) · z̃(y) =
∑

x∈{0,1}s

Lj(x)

3

4. P → V : ((σ1, . . . , σt), (θ1, . . . , θt)), where ∀j ∈ [t],

σj =
∑

y∈{0,1}s′

M̃j(r
′
x, y) · z̃1(y)

θj =
∑

y∈{0,1}s′

M̃j(r
′
x, y) · z̃2(y)

where σj , θj are the checks from LCCCS and CCCS respectively with
x = r′x.

5. V: e1 ← ẽq(rx, r
′
x), e2 ← ẽq(β, r′x)

check:

c =

∑
j∈[t]

γje1σj + γt+1e2

 q∑
i=1

ci ·
∏
j∈Si

σ


which should be equivalent to the g(x) computed by V, P in the sum-check
protocol.

6. V → P : ρ ∈R F

7. V, P : output the folded LCCCS instance (C ′, u′, x′, r′x, v
′
1, . . . , v

′
t), where

∀i ∈ [t]:

C ′ ← C1 + ρ · C2

u′ ← u+ ρ · 1
x′ ← x1 + ρ · x2
v′i ← σi + ρ · θi

8. P : output folded witness: w̃′ ← w̃1 + ρ · w̃2.

Multifolding flow:

4

Prover Verifier

γ, β, r′x
γ ∈ F, β ∈ Fs

r′x ∈ Fs

c, πSCsum-check prove

sum-check verify

{σj}, {θj}compute {σj}, {θj} ∀j ∈ [t]

verify c with {σj}, {θj} relation

ρ ρ ∈R F

fold LCCCS instance fold LCCCS instance

fold w̃

Now, to see the verifier check from step 5, observe that in LCCCS, since w̃
satisfies,

vj =
∑

y∈{0,1}s′

M̃j(rx, y) · z̃1(y)

=
∑

x∈{0,1}s

ẽq(rx, x) ·

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃1(y)


︸ ︷︷ ︸

Lj(x)

=
∑

x∈{0,1}s

Lj(x)

Observe also that in CCCS, since w̃ satisfies,

0 =

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)


︸ ︷︷ ︸

q(x)

we have that
G(X) =

∑
x∈{0,1}s

eq(X,x) · q(x)

is multilinear, and can be seen as a Lagrange polynomial where coefficients are
evaluations of q(x) on the hypercube.

5

For an honest prover, all these coefficients are zero, thus G(X) must neces-
sarily be the zero polynomial. Thus G(β) = 0 for β ∈R Fs.

0 = G(β) =
∑

x∈{0,1}s

eq(β, x) · q(x)

=
∑

x∈{0,1}s

ẽq(β, x) ·

q(x)︷ ︸︸ ︷
q∑

i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)


︸ ︷︷ ︸

Q(x)

=
∑

x∈{0,1}s

Q(x)

Note: notice that this past equation is related to Spartan paper [3], lemmas 4.2 and
4.3, where instead of

q(x) =

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)


for our R1CS example, we can restrict it to just M0,M1,M2, which would be

=

 ∑
y∈{0,1}s

M̃0(x, y) · z̃(y)

 ·
 ∑

y∈{0,1}s
M̃1(x, y) · z̃(y)

− ∑
y∈{0,1}s

M̃2(x, y) · z̃(y)

and we can see that q(x) is the same equation F̃io(x) that we had in Spartan:

F̃io(x) =

 ∑
y∈{0,1}s

Ã(x, y) · z̃(y)

·
 ∑

y∈{0,1}s
B̃(x, y) · z̃(y)

− ∑
y∈{0,1}s

C̃(x, y)·z̃(y)

where
Qio(t) =

∑
x∈{0,1}s

F̃io(x) · ẽq(t, x) = 0

and V checks Qio(τ) = 0 for τ ∈R Fs, which in HyperNova is G(β) = 0 for β ∈R Fs.
Qio(·) is a zero-polynomial (G(·) in HyperNova), it evaluates to zero for all points

in its domain iff F̃io(·) evaluates to zero at all points in the s-dimensional boolean
hypercube.

Spartan←→ HyperNova

τ ←→ β

F̃io(x)←→ q(x)

Qio(τ)←→ G(β)

So, in HyperNova

0 =
∑

x∈{0,1}s
Q(x) =

∑
x∈{0,1}s

ẽq(β, x) · q(x)

6

Comming back to HyperNova equations, we can now see that

c = g(r′x)

=

∑
j∈[t]

γj · Lj(r
′
x)

+ γt+1 ·Q(r′x)

=

∑
j∈[t]

γj ·
Lj(r

′
x)︷ ︸︸ ︷

e1 · σj

+ γt+1 ·

Q(x)︷ ︸︸ ︷
e2 ·

∑
i∈[q]

ci
∏
j∈Si

θj

where e1 = ẽq(rx, r
′
x) and e2 = ẽq(β, r′x).

Which is the check that V performs at step 5.

A Appendix: Some details

This appendix contains some notes on things that don’t specifically appear in the
paper, but that would be needed in a practical implementation of the scheme.

A.1 Matrix and Vector to Sparse Multilinear Extension

Let M ∈ Fm×n be a matrix. We want to compute its MLE

M̃(x1, . . . , xl) =
∑

e∈{0,1}l

M(e) · ẽq(x, e)

We can view the matrix M ∈ Fm×n as a function with the following signa-
ture:

M(·) : {0, 1}s × {0, 1}s
′
→ F

where s = ⌈logm⌉, s′ = ⌈log n⌉.
An entry in M can be accessed with a (s+ s′)-bit identifier.
eg.:

M =

(
1 2 3
4 5 6

)
∈ F3×2

m = 3, n = 2, s = ⌈log 3⌉ = 2, s′ = ⌈log 2⌉ = 1
So, M(x, y) = x, where x ∈ {0, 1}s, y ∈ {0, 1}s′ , x ∈ F

M =

(
M(00, 0) M(01, 0) M(10, 0)
M(00, 1) M(01, 1) M(10, 1)

)
∈ F3×2

This logic can be defined as follows:

7

Algorithm 1 Generating a Sparse Multilinear Polynomial from a matrix

set empty vector v ∈ (index: Z, x : Fs×s′)
for i to m do

for j to n do
if Mi,j ̸= 0 then

v.append({index : i · n+ j, x : Mi,j})
end if

end for
end for
return v ▷ v represents the evaluations of the polynomial

Once we have the polynomial, its MLE comes from

M̃(x1, . . . , xs+s′) =
∑

e∈{0,1}s+s′

M(e) · ẽq(x, e)

M(X) ∈ F[X1, . . . , Xs]

Multilinear extensions of vectors Given a vector u ∈ Fm, the polynomial ũ
is the MLE of u, and is obtained by viewing u as a function mapping (s = logm)

u(x) : {0, 1}s → F

ũ(x, e) is the multilinear extension of the function u(x)

ũ(x1, . . . , xs) =
∑

e∈{0,1}s

u(e) · ẽq(x, e)

References

[1] Abhiram Kothapalli and Srinath Setty. Hypernova: Recursive arguments
for customizable constraint systems. Cryptology ePrint Archive, Paper
2023/573, 2023. https://eprint.iacr.org/2023/573.

[2] Srinath Setty, Justin Thaler, and Riad Wahby. Customizable constraint
systems for succinct arguments. Cryptology ePrint Archive, Paper 2023/552,
2023. https://eprint.iacr.org/2023/552.

[3] Srinath Setty. Spartan: Efficient and general-purpose zksnarks without
trusted setup. Cryptology ePrint Archive, Paper 2019/550, 2019. https:

//eprint.iacr.org/2019/550.

8

https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2023/552
https://eprint.iacr.org/2019/550
https://eprint.iacr.org/2019/550

	CCS
	R1CS to CCS overview
	Committed CCS
	Linearized Committed CCS

	Multifolding Scheme for CCS
	Appendix: Some details
	Matrix and Vector to Sparse Multilinear Extension

