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Abstract

Notes taken from Vincenzo lovino explainations about FRI [I], [2].
These notes are for self-consumption, are not complete, don’t include
all the steps neither all the proofs.
An implementation of FRI can be found at https://github.com/arnaucube/fri-

commitment.
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1 Preliminaries

1.1 Low degree testing

V wants to ensure that deg(f(z)) < d.

We are in the IOP setting, V asks on a point, P sends back the opening at
that point.

TODO

1.1.1 General degree d test

R
Query at points {z;}¢™', 2 (with rand z € F). Interpolate p(x) at {f(z;)}d+
to reconstruct the unique polynomial p of degree d such that p(z;) = f(x;) Vi =
1...,d+1.


https://sites.google.com/site/vincenzoiovinoit/
https://github.com/arnaucube/fri-commitment
https://github.com/arnaucube/fri-commitment

V checks p(z) = f(z), if the check passes, then V is convinced with high
probability.

This needs d + 2 queries, is linear, O(n). With FRI we will have the test in
O(logd).

2 FRI protocol

Allows to test if a function f is a poly of degree < d in O(logd).
Note: "P sends f(x) to V7, "sends”, in the ideal IOP model means that all
the table of f(z) is sent, in practice is sent a commitment to f(z).

2.1 Intuition

V wants to check that two functions g, h are both polynomials of degree < d.
Consider the following protocol:

1. Vsends a € F to P. P sends f(z) = g(x) + ah(z) to V.
2. P sends f(z) = g(x) + ah(x) to V.
3. V queries f(r), g(r), h(r) for rand r € F.

4. V checks f(r) = g(r) + ah(r). (Schwartz-Zippel lema). If holds, V can be
certain that f(z) = g(z) + ah(z).

5. P proves that deg(f) < d.
6. If V is convinced that deg(f) < d, V belives that both g, h have deg < d.

With high probablility, o will not cancel the coeffs with deg > d + 1.

Let g(x) = a- 2%, h(x) =b- 291, and set f(x) = g(x) + ah(z). Imagine
that P can chose a such that az?*! +a bzt = 0, then, in f(z) the coefficients
of degree d + 1 would cancel.

Here, P proves g, h both have deg < d, but instead of doing 2-(d+2) queries
(d+ 2 for g, and d + 2 for h), it is done in d + 2 queries (for f). So we halved
the number of queries.

2.2 FRI

Both P and V have oracle access to function f.
V wants to test if f is polynomial with deg(f) < d.

Let fo(z) = f(x).

Each polynomial f(x) of degree that is a power of 2, can be written as

flx) = fH(@®) +aff(z?)



deg(f)
2

for some polynomials f¥, f® of degree , each one containing the even and

odd degree coefficients as follows:
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Proof generation P starts from f(z), and for i = 0 sets fo(z) = f(x).

1. Vi€ {0,log(d)}, with d = deg f(x),
P computes fZ(z), ff(x) for which

filx) = fH () +aff(2?) (eq. A;)
holds.
2. V sends challenge «;

3. P commits to the random linear combination f;41, for
firi(z) = fH (@) + aif (@) (eq. B;)
4. P sets fi(z) := fix1(x) and starts again the iteration.

Notice that at each step, deg(f;) halves.
This is done until the last step, where fL(z), ff(z) are constant (degree 0
polynomials). For which P does not commit but gives their values directly to

V.

Data sent from P to V

Commitments: {Comm(f;) éog(d)
eg. {Comm(fo), Comm(f1), Comm(fz), ..., Comm(fiogay)}

. i i log(d
Openings: {f;(=%), fi(—(=*))}5*""
for a challenge z € F set by V
eg. fo(2), fo(—2), f1(z%), f1(=2%), fa(z*), fa(—2%), f3(2%), fa(—2%), ...

Constant values of last iteration: {fZ, f{}, for k = log(d)



Verification V receives:

Commitments: Comm(f;), Vi € {0,log(d)}

Openings: {0,0}} = {fi(=%), fi(~(z*))}, Vi € {0,log(d)}
Constant vals: {ff, £}

For alli € {0,log(d)}, V knows the openings at 22" and —(22") for Comm/(f;(x)),
which are o; = f;(2%) and o} = f;(—(2?")) respectively.
V, from (eq. A;), knows that
fi(x) = fF(2®) + 2 f(2?)
should hold, thus
filz) = fL () + 2f14(2)

where f;(2) is known, but fF(22), fF(2?) are unknown. But, V also knows the
value for f;(—z), which can be represented as

fi(=2) = fF(2%) = 2£(2%)

(note that when replacing x by —z, it loses the negative in the power, not in
the linear combination).
Thus, we have the system of independent linear equations

filz) = fE(22) + 2 fF (%)
fil=2) = fF(2%) = 2£(2%)

for which V will find the value of fZ (zzi), fiR(zzi). Equivalently it can be

represented by )
(o) () = (49)

where V will find the values of fZ(z2'), f2(z%') being

)

fi(2) + fi(=2)
2

fi(2) = fi(=2)

2z

fEE =

Once, V has computed fF (22 ", (2 "), can use them to compute the linear
combination of

fis1(2%) = [L () + e f(2%)
obtaining then f;y1(22). This comes from (eq. B;).



Now, V checks that the obtained f;;1(22) is equal to the received opening
0i+1 = fit1 (22) from the commitment done by P. V checks also the commitment
of Comm(fiy1(x)) for the opening 0,11 = fir1(2?).

If the checks pass, V is convinced that fi(x) was committed honestly.

Now, sets ¢ := % + 1 and starts a new iteration. _ ‘

For the last iteration, V checks that the obtained f(2%"), f£(2%") are equal
to the constant values {f£, fI} received from P.

It needs log(d) iterations, and the number of queries (commitments + open-
ings sent and verified) needed is 2 - log(d).

3 FRI as polynomial commitment

[WIP. Unfinished document]
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