You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

206 lines
8.3 KiB

  1. \documentclass{article}
  2. \usepackage[utf8]{inputenc}
  3. \usepackage{amsfonts}
  4. \usepackage{amsthm}
  5. \usepackage{amsmath}
  6. \usepackage{mathtools}
  7. \usepackage{enumerate}
  8. \usepackage{hyperref}
  9. \usepackage{xcolor}
  10. \usepackage{pgf-umlsd} % diagrams
  11. \usepackage{centernot}
  12. % prevent warnings of underfull \hbox:
  13. \usepackage{etoolbox}
  14. \apptocmd{\sloppy}{\hbadness 4000\relax}{}{}
  15. \theoremstyle{definition}
  16. \newtheorem{definition}{Def}[section]
  17. \newtheorem{theorem}[definition]{Thm}
  18. % custom lemma environment to set custom numbers
  19. \newtheorem{innerlemma}{Lemma}
  20. \newenvironment{lemma}[1]
  21. {\renewcommand\theinnerlemma{#1}\innerlemma}
  22. {\endinnerlemma}
  23. \title{Notes on Spartan}
  24. \author{arnaucube}
  25. \date{April 2023}
  26. \begin{document}
  27. \maketitle
  28. \begin{abstract}
  29. Notes taken while reading about Spartan \cite{cryptoeprint:2019/550}.
  30. Usually while reading papers I take handwritten notes, this document contains some of them re-written to $LaTeX$.
  31. The notes are not complete, don't include all the steps neither all the proofs.
  32. \end{abstract}
  33. \tableofcontents
  34. \section{Encoding R1CS instances as low-degree polynomials}
  35. \begin{definition}{R1CS}
  36. $\exists w \in \mathbb{F}^{m - |io| - 1}$ such that $(A \cdot z) \circ (B \cdot z) = (C \cdot z)$, where $z=(io, 1, w)$.
  37. \end{definition}
  38. \textbf{Thm 4.1} $\forall$ R1CS instance $x = (\mathbb{F}, A, B, C, io, m, n)$, $\exists$ a degree-3 log m-variate polynomial $G$ such that $\sum_{x \in \{0,1\}^{log m}} G(x) = 0$.
  39. % \begin{theorem}{4.1} // TODO use theorem gadget
  40. % $\forall$
  41. % \begin{end}
  42. \vspace{0.5cm}
  43. For a RCS instance $x$, let $s = \lceil log m \rceil$.
  44. We can view matrices $A, B, C \in \mathbb{F}^{m \times m}$ as functions $\{0,1\}^s \times \{0,1\}^s \rightarrow \mathbb{F}$.
  45. For a given witness $w$ to $x$, let $z=(io, 1, w)$.
  46. View $z$ as a function $\{0,1\}^s \rightarrow \mathbb{F}$, so any entry in $z$ can be accessed with a $s$-bit identifier.
  47. $$
  48. F_{io}(x)=
  49. $$
  50. $$
  51. \left( \sum_{y \in \{0,1\}^s} A(x, y) \cdot Z(y) \right) \cdot \left( \sum_{y \in \{0,1\}^s} B(x, y) \cdot Z(y) \right) - \left( \sum_{y \in \{0,1\}^s} C(x, y) \cdot Z(y) \right)
  52. $$
  53. \begin{lemma}{4.1}
  54. $\forall x \in \{0,1\}^s,~ F_{io}(x)=0$ iff $Sat_{R1CS}(x,w)=1$.
  55. \end{lemma}
  56. $F_{io}(\cdot)$ is a function, not a polynomial, so it can not be used in the Sum-check protocol.
  57. consider its polynomial extension $\widetilde{F}_{io}(x): \mathbb{F}^s \rightarrow \mathbb{F}$,
  58. $$\widetilde{F}_{io}(x)=$$
  59. $$
  60. \left( \sum_{y \in \{0,1\}^s} \widetilde{A}(x, y) \cdot \widetilde{Z}(y) \right) \cdot \left( \sum_{y \in \{0,1\}^s} \widetilde{B}(x, y) \cdot \widetilde{Z}(y) \right) - \left( \sum_{y \in \{0,1\}^s} \widetilde{C}(x, y) \cdot \widetilde{Z}(y) \right)
  61. $$
  62. \begin{lemma}{4.2}
  63. $\forall x \in \{0,1\}^s,~ \widetilde{F}_{io}(x)=0$ iff $Sat_{R1CS}(x, w)=1$.
  64. \end{lemma}
  65. (proof: $\forall x \in \{0,1\}^s,~ \widetilde{F}_{io}(x)=F_{io}(x)$, so, result follows from Lemma 4.1.) % TODO link to lemma
  66. \vspace{0.5cm}
  67. $\widetilde{F}_{io}(\cdot)$: low-degree multivariate polynomial over $\mathbb{F}$ in $s$ variables.
  68. Verifier can check if $\sum_{x \in \{0,1\}^s} \widetilde{F}_{io}(x)=0$ using the Sum-check protocol.
  69. But: $\sum_{x\in \{0,1\}^s} \widetilde{F}_{io}(x)=0 \centernot\Longleftrightarrow F_{io}(x)=0 \forall x \in \{0,1\}^s$.
  70. Bcs: the $2^s$ terms in the sum might cancel each other even when the individual terms are not zero.
  71. Solution: consider
  72. $$Q_{io}(t)= \sum_{x \in \{0,1\}^s} \widetilde{F}_{io}(x) \cdot \widetilde{eq}(t, x)$$
  73. where $\widetilde{eq}(t, x) = \prod_{i=1}^s (t_i \cdot x_i + (1- t_i) \cdot (1- x_i))$.
  74. Basically $Q_{io}(\cdot)$ is a multivariate polynomial such that
  75. $$Q_{io}(t) = \widetilde{F}_{io}(t) ~\forall t \in \{0,1\}^s$$
  76. thus, $Q_{io}(\cdot)$ is a zero-polynomial iff $\widetilde{F}_{io}(x)=0 ~\forall x\in \{0,1\}^s$.
  77. $\Longleftrightarrow$ iff $\widetilde{F}_{io}(\cdot)$ encodes a witness $w$ such that $Sat_{R1CS}(x, w)=1$.
  78. To check that $Q_{io}(\cdot)$ is a zero-polynomial: check $Q_{io}(\tau)=0,~ \tau \in^R \mathbb{F}^s$ (Schwartz-Zippel-DeMillo–Lipton lemma).
  79. \section{NIZKs with succint proofs for R1CS}
  80. From Thm 4.1: to check R1CS instance $(\mathbb{F}, A, B, C, io, m, n)$ V can check if
  81. $$\sum_{x \in \{0,1\}^s} G_{io, \tau} (r_x)$$
  82. where $r_x \in \mathbb{F}^s$.
  83. Recall: $G_{io, \tau}(x) = \widetilde{F}_{io}(x) \cdot \widetilde{eq}(\tau, x)$.
  84. To evaluate $\widetilde{F}_{io}(r_x)$, V needs to evaluate
  85. $$\forall y \in \{0,1\}^s: \widetilde{A}(r_x, y), \widetilde{B}(r_x, y), \widetilde{C}(r_x, y), \widetilde{Z}(y)$$
  86. evaluations of $\widetilde{Z}(y) ~\forall y \in \{0,1\}^s ~\Longleftrightarrow (io, 1, w)$.
  87. Solution: combination of 3 protocols:
  88. \begin{itemize}
  89. \item Sum-check protocol
  90. \item randomized mini protocol
  91. \item polynomial commitment scheme
  92. \end{itemize}
  93. Observation: let $\widetilde{F}_{io}(r_x) = \bar{A}(r_x) \cdot \bar{B}(r_x) - \bar{C}(r_x)$, where
  94. $$\bar{A}(r_x) = \sum_{y \in \{0,1\}} \widetilde{A}(r_x, y) \cdot \widetilde{Z}(y)$$
  95. $$\bar{B}(r_x) = \sum_{y \in \{0,1\}} \widetilde{B}(r_x, y) \cdot \widetilde{Z}(y)$$
  96. $$\bar{C}(r_x) = \sum_{y \in \{0,1\}} \widetilde{C}(r_x, y) \cdot \widetilde{Z}(y)$$
  97. Prover makes 3 separate claims: $\bar{A}(r_x)=v_A,~ \bar{B}(r_x)=v_B,~ \bar{C}(r_x)=v_C$,
  98. then V evaluates:
  99. $$G_{io, \tau}(r_x) = (v_A \cdot v_B - v_C) \cdot \widetilde{eq}(r_x, \tau)$$
  100. which could be 3 sum-check protocol instances. Instead: combine 3 claims into a single claim:
  101. V samples $r_A, r_B, r_C \in^R \mathbb{F}$, and computes $c= r_A v_A + r_B v_B + r_C v_C$.
  102. V, P use sum-check protocol to check:
  103. $$r_A \cdot \bar{A}(r_x) + r_B \cdot \bar{B}(r_x) + r_C \cdot \bar{C}(r_x) == c$$
  104. Let $L(r_x) = r_A \cdot \bar{A}(r_x) +r_B \cdot \bar{B}(r_x) +r_C \cdot \bar{C}(r_x)$,
  105. \begin{align*}
  106. L(r_x) &= \sum_{y \in \{0,1\}^s}
  107. r_A \cdot \widetilde{A}(r_x, y) \cdot \widetilde{Z}(y)
  108. + r_B \cdot \widetilde{B}(r_x, y) \cdot \widetilde{Z}(y)
  109. + r_C \cdot \widetilde{C}(r_x, y) \cdot \widetilde{Z}(y)\\
  110. &= \sum_{y \in \{0,1\}^s} M_{r_x}(y)
  111. \end{align*}
  112. $M_{r_x}(y)$ is a s-variate polynomial with deg $\leq 2$ in each variable ($\Longleftrightarrow \mu = s,~ l=2,~ T=c$).
  113. \begin{align*}
  114. M_{r_x}(r_y) &=
  115. r_A \cdot \widetilde{A}(r_x, r_y) \cdot \widetilde{Z}(r_y)
  116. + r_B \cdot \widetilde{B}(r_x, r_y) \cdot \widetilde{Z}(r_y)
  117. + r_C \cdot \widetilde{C}(r_x, r_y) \cdot \widetilde{Z}(r_y)\\
  118. &=
  119. (r_A \cdot \widetilde{A}(r_x, r_y)
  120. + r_B \cdot \widetilde{B}(r_x, r_y)
  121. + r_C \cdot \widetilde{C}(r_x, r_y)) \cdot \widetilde{Z}(r_y)\\
  122. \end{align*}
  123. only one term in $M_{r_x}(r_y)$ depends on prover's witness: $\widetilde{Z}(r_y)$
  124. P sends a commitment to $\widetilde{w}(\cdot)$ (= MLE of the witness $w$) to V before the first instance of the sum-check protocol.
  125. \subsection{Full protocol}
  126. \begin{itemize}
  127. \item $pp \leftarrow Setup(1^{\lambda})$: invoke $pp \leftarrow PC.Setup(1^{\lambda}, log m)$; output $pp$
  128. \item $b \leftarrow <P(w), V(r)>(\mathbb{F}, A,B,C, io, m, n)$:
  129. \begin{enumerate}
  130. \item P: $(C, S) \leftarrow PC.Commit(pp, \widetilde{w})$ and send $C$ to V
  131. \item V: send $\tau \in^R \mathbb{F}^{log~m}$ to P
  132. \item let $T_1=0,~ \mu_1=log~m,~ l_1=3$
  133. \item V: set $r_x \in^R \mathbb{F}^{\mu_1}$
  134. \item Sum-check 1. $e_x \leftarrow <P_{SC}(G_{io,\tau}), V_{SC}(r_x)>(\mu_1, l_1, T_1)$
  135. \item P: compute $v_A=\overline{A}(r_x),~ v_B=\overline{B}(r_x),~ v_C=\overline{C}(r_x)$, send $(v_A, v_B, v_C)$ to V
  136. \item V: abort with $b=0$ if $e_x \neq (v_A \cdot v_B - v_C)\cdot \widetilde{eq}(r_x, \tau)$
  137. \item V: send $r_A, r_B, r_C \in^R \mathbb{F}$ to P
  138. \item let $T_2 = r_A \cdot v_A + r_B \cdot v_B + r_C \cdot v_C,~ \mu_2=log~m,~ l_2=2$
  139. \item V: set $r_y \in^R \mathbb{F}^{\mu_2}$
  140. \item Sum-check 2. $e_y \leftarrow <P_{SC}(M_{r_x}), V_{SC}(r_y)>(\mu_2, l_2, T_2)$
  141. \item P: $v \leftarrow \widetilde{w}(r_y[1..])$, send $v$ to V
  142. \item $b_e \leftarrow <P_{PC.Eval}(\widetilde{w}, S), V_{PC.Eval}(r)>(pp, C, r_y, v, \mu_2)$
  143. \item V: abourt with $b=0$ if $b_e==0$
  144. \item V: $v_z \leftarrow (1 - r_y[0]) \cdot \widetilde{w}(r_y [1..]) + r_y[0] \widetilde{(io, 1)} (r_y[1..])$
  145. \item V: $v_1 \leftarrow \widetilde{A}(r_x, r_y),~ v_2 \leftarrow \widetilde{B}(r_x, r_y),~ v_3 \leftarrow \widetilde{C}(r_x, r_y)$
  146. \item V: abort with $b=0$ if $e_y \neq (r_A v_1 + r_B v_2 + r_C v_3) \cdot v_z$
  147. \item V: output $b=1$
  148. \end{enumerate}
  149. \end{itemize}
  150. \vspace{2cm}
  151. \framebox{WIP: covered until sec.6}
  152. \bibliography{paper-notes.bib}
  153. \bibliographystyle{unsrt}
  154. \end{document}