You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

178 lines
4.6 KiB

  1. \documentclass{article}
  2. \usepackage[utf8]{inputenc}
  3. \usepackage{amsfonts}
  4. \usepackage{amsthm}
  5. \usepackage{amsmath}
  6. \usepackage{amssymb}
  7. \usepackage{mathtools}
  8. \usepackage{enumerate}
  9. \usepackage{hyperref}
  10. \hypersetup{
  11. colorlinks,
  12. citecolor=black,
  13. filecolor=black,
  14. linkcolor=black,
  15. urlcolor=blue
  16. }
  17. % \usepackage{xcolor}
  18. % prevent warnings of underfull \hbox:
  19. % \usepackage{etoolbox}
  20. % \apptocmd{\sloppy}{\hbadness 4000\relax}{}{}
  21. \theoremstyle{definition}
  22. \newtheorem{definition}{Def}[section]
  23. \newtheorem{theorem}[definition]{Thm}
  24. \newtheorem{innersolution}{}
  25. \newenvironment{solution}[1]
  26. {\renewcommand\theinnersolution{#1}\innersolution}
  27. {\endinnersolution}
  28. \title{Weil Pairing - study}
  29. \author{arnaucube}
  30. \date{August 2022}
  31. \begin{document}
  32. \maketitle
  33. \begin{abstract}
  34. Notes taken from \href{https://sites.google.com/site/matanprasma/artifact}{Matan Prsma} math seminars and also while reading about Bilinear Pairings. Usually while reading papers and books I take handwritten notes, this document contains some of them re-written to $LaTeX$.
  35. The notes are not complete, don't include all the steps neither all the proofs. I use these notes to revisit the concepts after some time of reading the topic.
  36. \end{abstract}
  37. \tableofcontents
  38. \section{Divisors and rational functions}
  39. \begin{definition}{Divisor}
  40. $$D= \sum_{P \in E(\mathbb{K})} n_p \cdot [P]$$
  41. \end{definition}
  42. \begin{definition}{Degree \& Sum}
  43. $$deg(D)= \sum_{P \in E(\mathbb{K})} n_p$$
  44. $$sum(D)= \sum_{P \in E(\mathbb{K})} n_p \cdot P$$
  45. \end{definition}
  46. \begin{definition}{Principal divisor}
  47. iff $deg(D)=0$ and $sum(D)=0$
  48. \end{definition}
  49. $D \sim D'$ iff $D - D'$ is principal.
  50. \begin{definition}{Evaluation of a rational function}
  51. $$r(D)= \prod r(P)^{n_p}$$
  52. \end{definition}
  53. \section{Weil reciprocity}
  54. \begin{theorem}{(Weil reciprocity)}
  55. Let $E/ \mathbb{K}$ be an e.c. over an alg. closed field. If $r,~s \in \mathbb{K}\setminus \{0\}$ are rational functions whose divisors have disjoint support, then
  56. $$r(div(s)) = s(div(r))$$
  57. \end{theorem}
  58. Proof. (todo)
  59. \section{Generic Weil Pairing}
  60. Let $E(\mathbb{K})$, with $\mathbb{K}$ of char $p$, $n$ s.t. $p \nmid n$.
  61. $\mathbb{K}$ large enough: $E(\mathbb{K})[n] = E(\mathbb{\overline{K}}) = \mathbb{Z}_n \oplus \mathbb{Z}_n$ (with $n^2$ elements).
  62. For $P, Q \in E[n]$,
  63. \begin{align*}
  64. D_P &\sim [P] - [0]\\
  65. D_Q &\sim [Q] - [0]
  66. \end{align*}
  67. We need them to have disjoint support:
  68. \begin{align*}
  69. D_P &\sim [P] - [0]\\
  70. D_Q' &\sim [Q+T] - [T]
  71. \end{align*}
  72. $$\Delta D = D_Q - D_Q' = [Q] - [0] - [Q+T] + [T]$$
  73. Note that $n D_P$ and $n D_Q$ are principal. Proof:
  74. \begin{align*}
  75. n D_P &= n [P] - n [O]\\
  76. deg(n D_P) &= n - n = 0\\
  77. sum(n D_P) &= nP - nO = 0
  78. \end{align*}
  79. ($nP = 0$ bcs. $P$ is n-torsion)
  80. Since $n D_P,~ n D_Q$ are principal, we know that $f_P,~ f_Q$ exist.
  81. Take
  82. \begin{align*}
  83. f_P &: div(f_P) = n D_P\\
  84. f_Q &: div(f_Q) = n D_Q
  85. \end{align*}
  86. We define
  87. $$
  88. e_n(P, Q) = \frac{f_P(D_Q)}{f_Q(D_P)}
  89. $$
  90. Remind: evaluation of a rational function over a divisor $D$:
  91. \begin{align*}
  92. D &= \sum n_P [P]\\
  93. r(D) &= \prod r(P)^{n_P}
  94. \end{align*}
  95. If $D_P = [P+S] - [S],~~ D_Q=[Q-T]-[T]$ what is $e_n(P, Q)$?
  96. \begin{align*}
  97. f_P(D_Q) &= f_P(Q+T)^1 \cdot f_P(T)^{-1}\\
  98. f_Q(D_P) &= f_Q(P+S)^1 \cdot f_Q(S)^{-1}
  99. \end{align*}
  100. $$
  101. e_n(P, Q) = \frac{f_P(Q+T)}{f_P(T)} / \frac{f_Q(P+S)}{f_Q(S)}
  102. $$
  103. with $S \neq \{O, P, -Q, P-Q \}$.
  104. \section{Properties}
  105. \section{Exercises}
  106. \emph{An Introduction to Mathematical Cryptography, 2nd Edition} - Section 6.8. Bilinear pairings on elliptic curves
  107. \begin{solution}{6.29}
  108. $div(R(x) \cdot S(x)) = div( R(x)) + div( S(x))$, where $R(x), S(x)$ are rational functions.
  109. \\proof:\\
  110. \emph{Norm} of $f$: $N_f = f \cdot \overline{f}$, and we know that $N_{fg} = N_f \cdot N_g~\forall~\mathbb{K}[E]$,\\
  111. then $$deg(f) = deg_x(N_f)$$\\
  112. and $$deg(f \cdot g) = deg(f) + deg(g)$$
  113. Proof:
  114. $$deg(f \cdot g) = deg_x(N_{fg}) = deg_x(N_f \cdot N_g)$$
  115. $$= deg_x(N_f) + deg_x(N_g) = deg(f) + deg(g)$$
  116. So, $\forall P \in E(\mathbb{K}),~ ord_P(rs) = ord_P(r) + ord_P(s)$.\\
  117. As $div(r) = \sum_{P\in E(\mathbb{K})} ord_P(r)[P]$, $div(s) = \sum ord_P(s)[P]$.
  118. So,
  119. $$div(rs) = \sum ord_P(rs)[P]$$
  120. $$= \sum ord_P(r)[P] + \sum ord_P(s)[P] = div(r) + div(s)$$
  121. \end{solution}
  122. \vspace{0.5cm}
  123. \begin{solution}{6.31}
  124. $$e_m(P, Q) = e_m(Q, P)^{-1} \forall P, Q \in E[m]$$
  125. Proof:
  126. We know that $e_m(P, P) = 1$, so:
  127. $$1 = e_m(P+Q, P+Q) = e_m(P, P) \cdot e_m(P, Q) \cdot e_m(Q, P) \cdot e_m(Q, Q)$$
  128. and we know that $e_m(P, P) = 1$, then we have:
  129. $$1 = e_m(P, Q) \cdot e_m(Q, P)$$
  130. $$\Longrightarrow e_m(P, Q) = e_m(Q, P)^{-1}$$
  131. \end{solution}
  132. \end{document}