|
|
# Implementation of: https://sci-hub.se/10.1109/iccke.2013.6682844 # more details at: https://arnaucube.com/blog/blind-signatures-ec.html#the-scheme # A Go implementation of this schema can be found at: https://github.com/arnaucube/go-blindsecp256k1
from hashlib import sha256
def hash(m): h_output = sha256(str(m).encode('utf-8')) return int(h_output.hexdigest(), 16)
class User: def __init__(self, F, G): self.F = F # Z_q self.G = G # elliptic curve generator
def blind_msg(self, m, R_): self.a = self.F.random_element() self.b = self.F.random_element() self.R = self.a * R_ + self.b * self.G m_ = self.F(self.a)^(-1) * self.F(self.R.xy()[0]) * self.F(hash(m)) return m_
def unblind_sig(self, s_): s = self.a * s_ + self.b return (self.R, s)
class Signer: def __init__(self, F, G): self.F = F # Z_q self.G = G # elliptic curve generator
# gen Signer's key pair self.d = self.F.random_element() self.Q = self.G * self.d
def new_request_params(self): self.k = self.F.random_element() R_ = self.G * self.k return R_
def blind_sign(self, m_): return self.d * m_ + self.k
def verify(G, Q, sig, m): (R, s) = sig return s*G == R + (Fq(R.xy()[0]) * Fq(hash(m))) * Q
# ethereum elliptic curve p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F # base field a = 0 b = 7 F = GF(p) # base field E = EllipticCurve(F, [a,b]) GX = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798 GY = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8 g = E(GX,GY) n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 q = g.order() # order of Fp assert is_prime(p) assert is_prime(q) Fq = GF(q) # scalar field
# protocol flow:
user = User(Fq, g) signer = Signer(Fq, g)
R_ = signer.new_request_params()
m = 12345 # user's message m_ = user.blind_msg(m, R_)
s_ = signer.blind_sign(m_)
sig = user.unblind_sig(s_)
v = verify(g, signer.Q, sig, m) print(v) assert v
|