You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123 lines
3.4 KiB

  1. \documentclass{article}
  2. \usepackage[utf8]{inputenc}
  3. \usepackage{amsfonts}
  4. \usepackage{amsthm}
  5. \usepackage{amsmath}
  6. \usepackage{amssymb}
  7. \usepackage{enumerate}
  8. \usepackage{hyperref}
  9. \hypersetup{
  10. colorlinks,
  11. citecolor=black,
  12. filecolor=black,
  13. linkcolor=black,
  14. urlcolor=blue
  15. }
  16. % \usepackage{xcolor}
  17. % prevent warnings of underfull \hbox:
  18. % \usepackage{etoolbox}
  19. % \apptocmd{\sloppy}{\hbadness 4000\relax}{}{}
  20. \theoremstyle{definition}
  21. \newtheorem{definition}{Def}[section]
  22. \newtheorem{theorem}[definition]{Thm}
  23. \newtheorem{innersolution}{}
  24. \newenvironment{solution}[1]
  25. {\renewcommand\theinnersolution{#1}\innersolution}
  26. {\endinnersolution}
  27. \title{Bilinear Pairings - study}
  28. \author{arnaucube}
  29. \date{August 2022}
  30. \begin{document}
  31. \maketitle
  32. \begin{abstract}
  33. Notes taken from \href{https://sites.google.com/site/matanprasma/artifact}{Matan Prsma} math seminars and also while reading about Bilinear Pairings. Usually while reading papers and books I take handwritten notes, this document contains some of them re-written to $LaTeX$.
  34. The notes are not complete, don't include all the steps neither all the proofs. I use these notes to revisit the concepts after some time of reading the topic.
  35. \end{abstract}
  36. \tableofcontents
  37. \section{Weil reciprocity}
  38. \section{Generic Weil Pairing}
  39. \begin{definition}{Divisor}
  40. $$D= \sum_{P \in E(\mathbb{K})} n_p \cdot [P]$$
  41. \end{definition}
  42. \begin{definition}{Degree \& Sum}
  43. $$deg(D)= \sum_{P \in E(\mathbb{K})} n_p$$
  44. $$sum(D)= \sum_{P \in E(\mathbb{K})} n_p \cdot P$$
  45. \end{definition}
  46. \begin{definition}{Principal divisor}
  47. iff $deg(D)=0$ and $sum(D)=0$
  48. \end{definition}
  49. $D \sim D'$ iff $D - D'$ is principal.
  50. \begin{definition}{Evaluation of a rational function}
  51. $$r(D)= \prod r(P)^{n_p}$$
  52. \end{definition}
  53. \subsection{Generic Weil Pairing}
  54. Let $E(\mathbb{K})$, with $\mathbb{K}$ of char $p$, $n$ s.t. $p \nmid n$.
  55. $\mathbb{K}$ large enough: $E(\mathbb{K})[n] = E(\mathbb{\overline{K}}) = \mathbb{Z}_n \oplus \mathbb{Z}_n$ (with $n^2$ elements).
  56. $P, Q \in E[n]$:
  57. $$D_P \sim [P] - [0]$$
  58. $$D_Q \sim [Q] - [0]$$
  59. We need them to have disjoint support:
  60. $$D_P \sim [P] - [0]$$
  61. $$D_Q \sim [Q+T] - [T]$$
  62. $$\Delta D = D_Q - D_Q' = [Q] - [0] - [Q+T] + [T]$$
  63. \section{Exercises}
  64. \emph{An Introduction to Mathematical Cryptography, 2nd Edition} - Section 6.8. Bilinear pairings on elliptic curves
  65. \begin{solution}{6.29}
  66. $div(R(x) \cdot S(x)) = div( R(x)) + div( S(x))$, where $R(x), S(x)$ are rational functions.
  67. \\proof:\\
  68. \emph{Norm} of $f$: $N_f = f \cdot \overline{f}$, and we know that $N_{fg} = N_f \cdot N_g~\forall~\mathbb{K}[E]$,\\
  69. then $$deg(f) = deg_x(N_f)$$\\
  70. and $$deg(f \cdot g) = deg(f) + deg(g)$$
  71. Proof:
  72. $$deg(f \cdot g) = deg_x(N_{fg}) = deg_x(N_f \cdot N_g)$$
  73. $$= deg_x(N_f) + deg_x(N_g) = deg(f) + deg(g)$$
  74. So, $\forall P \in E(\mathbb{K}),~ ord_P(rs) = ord_P(r) + ord_P(s)$.\\
  75. As $div(r) = \sum_{P\in E(\mathbb{K})} ord_P(r)[P]$, $div(s) = \sum ord_P(s)[P]$.
  76. So,
  77. $$div(rs) = \sum ord_P(rs)[P]$$
  78. $$= \sum ord_P(r)[P] + \sum ord_P(s)[P] = div(r) + div(s)$$
  79. \end{solution}
  80. \vspace{0.5cm}
  81. \begin{solution}{6.31}
  82. $$e_m(P, Q) = e_m(Q, P)^{-1} \forall P, Q \in E[m]$$
  83. Proof:
  84. We know that $e_m(P, P) = 1$, so:
  85. $$1 = e_m(P+Q, P+Q) = e_m(P, P) \cdot e_m(P, Q) \cdot e_m(Q, P) \cdot e_m(Q, Q)$$
  86. and we know that $e_m(P, P) = 1$, then we have:
  87. $$1 = e_m(P, Q) \cdot e_m(Q, P)$$
  88. $$\Longrightarrow e_m(P, Q) = e_m(Q, P)^{-1}$$
  89. \end{solution}
  90. \end{document}