You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

261 lines
9.2 KiB

  1. \documentclass{article}
  2. \usepackage[utf8]{inputenc}
  3. \usepackage{amsfonts}
  4. \usepackage{amsthm}
  5. \usepackage{amsmath}
  6. \usepackage{mathtools}
  7. \usepackage{enumerate}
  8. \usepackage{hyperref}
  9. \usepackage{xcolor}
  10. % prevent warnings of underfull \hbox:
  11. \usepackage{etoolbox}
  12. \apptocmd{\sloppy}{\hbadness 4000\relax}{}{}
  13. \theoremstyle{definition}
  14. \newtheorem{definition}{Def}[section]
  15. \newtheorem{theorem}[definition]{Thm}
  16. % custom lemma environment to set custom numbers
  17. \newtheorem{innerlemma}{Lemma}
  18. \newenvironment{lemma}[1]
  19. {\renewcommand\theinnerlemma{#1}\innerlemma}
  20. {\endinnerlemma}
  21. \title{Notes on FRI}
  22. \author{arnaucube}
  23. \date{February 2023}
  24. \begin{document}
  25. \maketitle
  26. \begin{abstract}
  27. Notes taken from \href{https://sites.google.com/site/vincenzoiovinoit/}{Vincenzo Iovino} explainations about FRI \cite{fri}, \cite{cryptoeprint:2022/1216}.
  28. These notes are for self-consumption, are not complete, don't include all the steps neither all the proofs.
  29. An implementation of FRI can be found at \href{https://github.com/arnaucube/fri-commitment}{https://github.com/arnaucube/fri-commitment}.
  30. \end{abstract}
  31. \tableofcontents
  32. \section{Preliminaries}
  33. \subsection{Low degree testing}
  34. V wants to ensure that $deg(f(x)) \leq d$.
  35. We are in the IOP setting, V asks on a point, P sends back the opening at that point.
  36. TODO
  37. \subsubsection{General degree d test}
  38. Query at points $\{ x_i \}_0^{d+1},~z$ (with rand $z \overset{R}{\in} \mathbb{F}$).
  39. Interpolate $p(x)$ at $\{f(x_i)\}_0^{d+1}$ to reconstruct the unique polynomial $p$ of degree $d$ such that $p(x_i)=f(x_i)~\forall i=1, \ldots, d+1$.
  40. V checks $p(z)=f(z)$, if the check passes, then V is convinced with high probability.
  41. This needs $d+2$ queries, is linear, $\mathcal{O}(n)$. With FRI we will have the test in $\mathcal{O}(\log{}d)$.
  42. \section{FRI protocol}
  43. Allows to test if a function $f$ is a poly of degree $\leq d$ in $\mathcal{O}(\log{}d)$.
  44. Note: "P \emph{sends} $f(x)$ to V", "\emph{sends}", in the ideal IOP model means that all the table of $f(x)$ is sent, in practice is sent a commitment to $f(x)$.
  45. \subsection{Intuition}
  46. V wants to check that two functions $g,~h$ are both polynomials of degree $\leq d$.
  47. Consider the following protocol:
  48. \begin{enumerate}
  49. \item V sends $\alpha \in \mathbb{F}$ to P. P sends $f(x) = g(x) + \alpha h(x)$ to V.
  50. \item P sends $f(x)=g(x) + \alpha h(x)$ to V.
  51. \item V queries $f(r), ~g(r), ~h(r)$ for rand $r \in \mathbb{F}$.
  52. \item V checks $f(r)=g(r) + \alpha h(r)$. (Schwartz-Zippel lema).
  53. If holds, V can be certain that $f(x)=g(x)+ \alpha h(x)$.
  54. \item P proves that $deg(f) \leq d$.
  55. \item If V is convinced that $deg(f) \leq d$, V belives that both $g, h$ have $deg \leq d$.
  56. \end{enumerate}
  57. %/// TODO tabulate this next lines
  58. With high probablility, $\alpha$ will not cancel the coeffs with $deg \geq d+1$. % TODO check which is the name of this theorem or why this is true
  59. Let $g(x)=a \cdot x^{d+1}, ~~ h(x)=b \cdot x^{d+1}$, and set $f(x) = g(x) + \alpha h(x)$.
  60. Imagine that P can chose $\alpha$ such that $a x^{d+1} + \alpha \cdot b x^{d+1} = 0$, then, in $f(x)$ the coefficients of degree $d+1$ would cancel.
  61. %///
  62. \quad
  63. Here, P proves $g,~h$ both have $deg \leq d$, but instead of doing $2 \cdot (d+2)$ queries ($d+2$ for $g$, and $d+2$ for $h$), it is done in $d+2$ queries (for $f$).
  64. So we halved the number of queries.
  65. \subsection{FRI}
  66. Both P and V have oracle access to function $f$.
  67. V wants to test if $f$ is polynomial with $deg(f) \leq d$.
  68. Let $f_0(x)=f(x)$.
  69. Each polynomial $f(x)$ of degree that is a power of $2$, can be written as
  70. $$f(x) = f^L(x^2) + x f^R(x^2)$$
  71. for some polynomials $f^L,~f^R$ of degree $\frac{deg(f)}{2}$, each one containing the even and odd degree coefficients as follows:
  72. % $f^L(x)$ is built from the even degree coefficients divided by $x$, and $f^R(x)$ from the odd degree coefficients divided by $x$.
  73. $$f^L(x)= \sum_0^{\frac{d+1}{2}-1} c_{2i} x^i ,~~ f^R(x)= \sum_0^{\frac{d+1}{2}-1} c_{2i+1} x^i$$
  74. eg. for $f(x)=x^4+x^3+x^2+x+1$,
  75. \begin{align*}
  76. \begin{rcases}
  77. f^L(x)=x^2+x+1\\
  78. f^R(x)=x+1
  79. \end{rcases}
  80. ~f(x) = f^L(x^2) &+ x \cdot f^R(x^2)\\
  81. = (x^2)^2 + (x^2) + 1 &+ x \cdot ((x^2) + 1)\\
  82. = x^4 + x^2 + 1 &+ x^3 + x
  83. \end{align*}
  84. % \begin{enumerate}
  85. % \item V sends to P some $\alpha_0 \in \mathbb{F}$.
  86. % Let
  87. % \begin{equation}\tag{$A_0$}
  88. % f_0(x) = f_0^L(x^2) + x f_0^R(x^2)
  89. % \end{equation}
  90. % \item P sends
  91. % \begin{equation}\tag{$B_0$}
  92. % f_1(x) = f_0^L(x) + \alpha_0 f_0^R(x)
  93. % \end{equation}
  94. % to V.
  95. %
  96. % (remember that "sends" in IOP model is that P commits to it)
  97. % \item V sends to P some $\alpha_1 \in \mathbb{F}$.
  98. % Let
  99. % \begin{equation}\tag{$A_1$}
  100. % f_1(x) = f_1^L(x^2) + x f_1^R(x^2)
  101. % \end{equation}
  102. % \item P sends
  103. % \begin{equation}\tag{$B_1$}
  104. % f_2(x) = f_1^L(x) + \alpha_1 f_1^R(x)
  105. % \end{equation}
  106. % to V.
  107. % \item Keep repeating the process, eg. let
  108. % \begin{equation}\tag{$A_2$}
  109. % f_2(x) = f_2^L(x^2) + x f_2^R(x^2)
  110. % \end{equation}
  111. % until $f_i^L,~ f_i^R$ are constant (degree 0 polynomials).
  112. % \item Once $f_i^L,~ f_i^R$ are constant, P sends them to V.
  113. % \end{enumerate}
  114. %
  115. % Notice that at each step, $deg(f_i)$ halves.
  116. \vspace{30px}
  117. \paragraph{Proof generation}
  118. P starts from $f(x)$, and for $i=0$ sets $f_0(x)=f(x)$.
  119. \begin{enumerate}
  120. \item $\forall~i \in \{0, log(d)\}$, with $d = deg~f(x)$,\\
  121. P computes $f_i^L(x),~ f_i^R(x)$ for which
  122. \begin{equation}\tag{eq. $A_i$}
  123. f_i(x) = f_i^L(x^2) + x f_i^R(x^2)
  124. \end{equation}
  125. holds.
  126. \item V sends challenge $\alpha_i$
  127. \item P commits to the random linear combination $f_{i+1}$, for
  128. \begin{equation}\tag{eq. $B_i$}
  129. f_{i+1}(x) = f_i^L(x) + \alpha_i f_i^R(x)
  130. \end{equation}
  131. \item P sets $f_i(x) := f_{i+1}(x)$ and starts again the iteration.
  132. \end{enumerate}
  133. Notice that at each step, $deg(f_i)$ halves.
  134. This is done until the last step, where $f_i^L(x),~ f_i^R(x)$ are constant (degree 0 polynomials). For which P does not commit but gives their values directly to V.
  135. \paragraph{Data sent from P to V}
  136. \begin{itemize}
  137. \item[] Commitments: $\{Comm(f_i)\}_0^{log(d)}$\\
  138. {\scriptsize eg. $\{Comm(f_0),~ Comm(f_1),~ Comm(f_2),~ ...,~ Comm(f_{log(d)})\}$ }
  139. \item[] Openings: $\{ f_i(z^{2^i}),~f_i(-(z^{2^i})) \}_0^{log(d)}$\\
  140. for a challenge $z \in \mathbb{F}$ set by V\\
  141. {\scriptsize eg. $f_0(z),~ f_0(-z),~ f_1(z^2),~ f_1(-z^2),~ f_2(z^4),~ f_2(-z^4),~ f_3(z^8),~ f_3(-z^8),~ \ldots$}
  142. \item[] Constant values of last iteration: $\{f_k^L,~f_k^R\}$, for $k=log(d)$
  143. \end{itemize}
  144. \paragraph{Verification}
  145. V receives:
  146. \begin{align*}
  147. \text{Commitments:}~ &Comm(f_i),~ \forall i \in \{0, log(d)\}\\
  148. \text{Openings:}~ &\{o_i, o_i'\}=\{ f_i(z^{2^i}),~f_i(-(z^{2^i})) \},~ \forall i \in \{0, log(d)\}\\
  149. \text{Constant vals:}~ &\{f_k^L,~f_k^R\}
  150. \end{align*}
  151. \vspace{20px}
  152. For all $i \in \{0, log(d)\}$, V knows the openings at $z^{2^i}$ and $-(z^{2^i})$ for $Comm(f_i(x))$, which are $o_i=f_i(z^{2^i})$ and $o_i'=f_i(-(z^{2^i}))$ respectively.
  153. V, from (eq. $A_i$), knows that
  154. $$f_i(x)=f_i^L(x^2) + x f_i^R(x^2)$$
  155. should hold, thus
  156. $$f_i(z)=f_i^L(z^2) + z f_i^R(z^2)$$
  157. where $f_i(z)$ is known, but $f_i^L(z^2),~f_i^R(z^2)$ are unknown.
  158. But, V also knows the value for $f_i(-z)$, which can be represented as
  159. $$f_i(-z)=f_i^L(z^2) - z f_i^R(z^2)$$
  160. (note that when replacing $x$ by $-z$, it loses the negative in the power, not in the linear combination).
  161. Thus, we have the system of independent linear equations
  162. \begin{align*} % TODO add braces on left
  163. f_i(z)&=f_i^L(z^2) + z f_i^R(z^2)\\
  164. f_i(-z)&=f_i^L(z^2) - z f_i^R(z^2)
  165. \end{align*}
  166. for which V will find the value of $f_i^L(z^{2^i}),~f_i^R(z^{2^i})$.
  167. Equivalently it can be represented by
  168. $$
  169. \begin{pmatrix}
  170. 1 & z\\
  171. 1 & -z
  172. \end{pmatrix}
  173. \begin{pmatrix}
  174. f_i^L(z^2)\\
  175. f_i^R(z^2)
  176. \end{pmatrix}
  177. =
  178. \begin{pmatrix}
  179. f_i(z)\\
  180. f_i(-z)
  181. \end{pmatrix}
  182. $$
  183. where V will find the values of $f_i^L(z^{2^i}),~f_i^R(z^{2^i})$ being
  184. \begin{align*}
  185. f_i^L(z^{2^i})=\frac{f_i(z) + f_i(-z)}{2}\\
  186. f_i^R(z^{2^i})=\frac{f_i(z) - f_i(-z)}{2z}\\
  187. \end{align*}
  188. Once, V has computed $f_i^L(z^{2^i}),~f_i^R(z^{2^i})$, can use them to compute the linear combination of
  189. $$
  190. f_{i+1}(z^2) = f_i^L(z^2) + \alpha_i f_i^R(z^2)
  191. $$
  192. obtaining then $f_{i+1}(z^2)$. This comes from (eq. $B_i$).
  193. Now, V checks that the obtained $f_{i+1}(z^2)$ is equal to the received opening $o_{i+1}=f_{i+1}(z^2)$ from the commitment done by P.
  194. V checks also the commitment of $Comm(f_{i+1}(x))$ for the opening $o_{i+1}=f_{i+1}(z^2)$.\\
  195. If the checks pass, V is convinced that $f_1(x)$ was committed honestly.
  196. Now, sets $i := i+1$ and starts a new iteration.
  197. For the last iteration, V checks that the obtained $f_i^L(z^{2^i}),~f_i^R(z^{2^i})$ are equal to the constant values $\{f_k^L,~f_k^R\}$ received from P.
  198. \vspace{10px}
  199. It needs $log(d)$ iterations, and the number of queries (commitments + openings sent and verified) needed is $2 \cdot log(d)$.
  200. \section{FRI as polynomial commitment}
  201. \emph{[WIP. Unfinished document]}
  202. \bibliography{paper-notes.bib}
  203. \bibliographystyle{unsrt}
  204. \end{document}