diff --git a/commutative-algebra-notes.pdf b/commutative-algebra-notes.pdf index 0ab13d0..9af0ba3 100644 Binary files a/commutative-algebra-notes.pdf and b/commutative-algebra-notes.pdf differ diff --git a/commutative-algebra-notes.tex b/commutative-algebra-notes.tex index 47a1c16..4fd9100 100644 --- a/commutative-algebra-notes.tex +++ b/commutative-algebra-notes.tex @@ -95,22 +95,22 @@ % WIP \subsection{Lemmas, propositions and corollaries} -\begin{thm}{1.X}{Zorn's lemma} \label{zorn} +\begin{thm}{AM.1.X}{Zorn's lemma} \label{zorn} TODO \end{thm} -\begin{thm}{1.3} \label{1.3} +\begin{thm}{AM.1.3} \label{1.3} Every ring $A \neq 0$ has at lleast one maximal ideal. \end{thm} \begin{proof} By Zorn's lemma \ref{zorn}. \end{proof} -\begin{cor}{1.4} \label{1.4} +\begin{cor}{AM.1.4} \label{1.4} if $I \neq (1)$ an ideal of $A$, $\exists$ a maximal ideal of $A$ containing $I$. \end{cor} -\begin{cor}{1.5} \label{1.5} +\begin{cor}{AM.1.5} \label{1.5} Every non-unit of $A$ is contained in a maximal ideal. \end{cor} @@ -122,7 +122,7 @@ $Jac(A)$ is an ideal of $A$. \end{defn} -\begin{prop}{1.9} \label{1.9} +\begin{prop}{AM.1.9} \label{1.9} $x \in Jac(A)$ iff $(1 - xy)$ is a unit in $A$, $\forall y \in A$. \end{prop} \begin{proof} @@ -146,9 +146,30 @@ \subsection{Modules} +Let $A$ be a ring. An $A$-module is an Abelian group $M$ with a multiplication +map +\begin{align*} + A \times M &\longrightarrow M\\ + (f, m) &\longmapsto fm +\end{align*} +satisfying $\forall~ f,g \in A,~~ m, n \in M$. +\begin{enumerate}[i.] + \item $f(m \pm n)=fm \pm fn$ + \item $(f \pm g) m = fm \pm gm$ + \item $(fg) m = f(gm)$ + \item $1_A m = m$ +\end{enumerate} + +Let $\psi: M \longrightarrow M$ an $A$-linear endomorphism of $M$.\\ +$A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi$. +\begin{itemize} +\item since $\psi$ is $A$-linear, $A[\psi]$ is a commutative ring. +\item $M$ is a module over $A[\psi]$, so $\psi$ beomes multiplication by a ring element. +\end{itemize} + \subsection{Cayley-Hamilton theorem, Nakayama lemma, and corollaries} -\begin{prop}{2.4}(Cayley-Hamilton Theorem) \label{2.4} +\begin{prop}{AM.2.4}(Cayley-Hamilton Theorem) \label{2.4} Let $M$ a fingen $A$-module. Let $\aA$ an ideal of $A$, let $\psi$ an $A$-module endomorphism of $M$ such that $\psi(M) \subseteq \aA M$. @@ -228,7 +249,7 @@ With the Kronecker delta, $\psi(x_i)$ can be expressed as $$\psi(x_i) = \sum_{j=1}^n \delta_{ij} \psi(x_j)$$ - so the previous matrix ccan be characterized as + so the previous matrix can be characterized as $$\sum_{j=1}^n (\delta_{ij} \psi - a_{ij}) x_j = 0$$ The entries of the matrix are \emph{endomorphisms} (elements of the ring $A[\psi]$) @@ -278,7 +299,7 @@ -\begin{cor}{2.5} \label{2.5} +\begin{cor}{AM.2.5} \label{2.5} Let $M$ a fingen $A$-module, let $\aA$ an ideal of $A$ such that $\aA M = M$. Then, $\exists~ x \equiv 1 \pmod \aA$ such that $xM = 0$. @@ -310,7 +331,7 @@ -\begin{prop}{2.6}{Nakayama's lemma} \label{2.6} +\begin{prop}{AM.2.6}{Nakayama's lemma} \label{2.6} Let $M$ a fingen $A$-module, let $\aA$ an ideal of $A$ such that $\aA \subseteq Jac(A)$. Then $\aA M = M$ implies $M=0$. @@ -318,16 +339,16 @@ \begin{proof} By \ref{2.5}: since $\aA M = M$, we have $x M =0$ for some $x \equiv 1 \pmod {Jac(A)}$. (notice that at \ref{2.5} is $\pmod \aA$ but here we use $\pmod {Jac(A)}$, since we have $\aA \subseteq Jac(A)$). - By \ref{1.9}, $x$ is a unit in $A$. + By \ref{1.9}, $x$ is a unit in $A$ (thus $x^{-1}\cdot x=1$). - Hence $M = x^{-1} \cdot \underbrace{x \cdot M}_{=0~ \text{(by \ref{2.5})}} = 0$. + Hence $M = x^{-1} \cdot \underbrace{x~ \cdot M}_{=0~ \text{(by \ref{2.5})}} = 0$. Thus, if $\aA M = M$ then $M=0$. \end{proof} -\begin{cor}{2.7} \label{2.7} +\begin{cor}{AM.2.7} \label{2.7} Let $M$ a fingen $A$-module, let $N \subseteq M$ a submodule of $M$, let $\aA \subseteq Jac(A)$ an ideal. Then $M = \aA M + N \stackrel{\text{implies}}{\Longrightarrow} M=N$. @@ -404,7 +425,7 @@ -\begin{prop}{2.8} \label{2.8} +\begin{prop}{AM.2.8} \label{2.8} Let $x_i \forall i \in [n]$ be elements of $M$ whose images $\frac{M}{m M}$ from a basis of this vecctor space. Then the $x_i$ generate $M$. \end{prop} \begin{proof} @@ -414,11 +435,85 @@ \end{proof} -\subsection{Noetherean rings} +\begin{prop}{AM.2.10} \label{2.10} + Split exact sequence. TODO +\end{prop} + +\section{Noetherean rings} + +\begin{defn}{}{Ascending Chain Condition} + A partially orddered set $\Sigma$ has the \emph{ascending chain condition} (a.c.c.) if every chain + $$s_1 \leq s_2 \leq \ldots \leq s_k \leq \ldots$$ + eventually breaks off, that is, $s_k = s_{k+1} = \ldots$ for some $k$. +\end{defn} + +$\Longrightarrow~ \Sigma$ has the a.c.c. iff every non-empty subset $S \subset \Sigma$ has a maximal element.\\ +\hspace*{2em} if $\empty \neq S \subset \Sigma$ does not have a maximal element, choose $s_1 \in S$, and for each $s_k$, an element $s_{k+1}$ with $s_k < s_{k+1}$, thus contradicting the a.c.c. + +\begin{defn}{R.3.2}{Noetherian ring} + Let $A$ a ring; 3 equivalent conditions: + \begin{enumerate}[i.] + \item the set $\Sigma$ of ideals of $A$ has the a.c.c.; in other words, every increasing chain of ideals + $$I_1 \subset I_2 \subset \ldots \subset I_k \subset \ldots$$ + eventually stops, that is $I_k = I_{k+1}=\ldots$ for some $k$. + \item every nonempty set $S$ of iddeals has a maximal element + \item every iddeal $I \subset A$ is finitely generated + \end{enumerate} + If these conditions hold, then $A$ is \emph{Noetherian}. +\end{defn} +\begin{proof} + TODO +\end{proof} + +\begin{defn}{R.3.4.D}{Noetherian modules} + An $A$-module $M$ is Noetherian if the submoles of $M$ have the a.c.c.,\\ + that is, ay increasing chain + $$M_1 \subset M_2 \subset \ldots \subset M_k \subset \ldots$$ + of submodules eventually stops. +\end{defn} +As in with rings, it is equivalent to say that +\begin{enumerate}[i.] + \item any nonempty set of modulesof $M$ has a maximal element + \item every submodule of $M$ is finite +\end{enumerate} +\begin{prop}{R.3.4.P} + Let $0 \longrightarrow L \xrightarrow{\ \alpha \ } M \xrightarrow{\ \beta \ } N \longrightarrow 0$ be a s.e.s. (split exact sequence, \ref{2.10}). + + Then, $M$ is Noetherian $\Longleftrightarrow~ L$ and $N$ are Noetherian. +\end{prop} +\begin{proof} + $\Longrightarrow$: trivial, since ascending chains of submodules in $L$ and $N$ correspond one-to-one to certain chains in $M$. + + $\Longleftarrow$: suppose $M_1 \subset M_2 \subset \ldots \subset M_k \subset \ldots$ is an increasing chain of submodules of $M$. + + Then identifying $\alpha(L)$ with $L$ and taking intersection gives a chain + $$L \cap M_1 \subset L \cap M_2 \subset \ldots \subset L \cap M_k \subset \ldots$$ + of submodules of $L$, and applying $\beta$ gives a chain + $$\beta(M_1) \subset \beta(M_2) \subset \ldots \beta(M_k) \subset \ldots$$ + of submodules of $N$. + + Each of these two chains eventually stop, by the assumption on $L$ and $N$, so that we only need to prove the following lemma which completes the proof. +\end{proof} + +\begin{lemma}{R.3.4.L} + for submodules $M_1 \subset M_2 \subset M$,\\ + + $L \cap M_1 = L \cap M_2$ and $\beta(M_1) = \beta(M_2) ~\Longrightarrow~ M_1 = M_2$. +\end{lemma} +\begin{proof} + if $m\in M_2$, then $\beta(m) \in \beta(M_1) = \beta(M_2)$, so that there is an $n \in M_1$ such that $\beta(m)=\beta(m)$. + + Then $\beta(m-n)=0$, so that + $$m - n \in M_2 \cap ker(\beta)=M_1 \cap ker(\beta)$$ + + Hence $m \in M_1$, thus $M_1 = M_2$. +\end{proof} + +\newpage \section{Exercises}