Add Inner Product Argument (IPA) implementations: - Bulletproofs version - Halo paper version (modified IPA)master
@ -0,0 +1,291 @@ |
|||
# This file contains two Inner Product Argument implementations: |
|||
# - Bulletproofs version: https://eprint.iacr.org/2017/1066.pdf |
|||
# - Halo version: https://eprint.iacr.org/2019/1021.pdf |
|||
|
|||
|
|||
|
|||
# IPA_bulletproofs implements the IPA version from the Bulletproofs paper: https://eprint.iacr.org/2017/1066.pdf |
|||
# https://doc-internal.dalek.rs/bulletproofs/notes/inner_product_proof/index.html |
|||
class IPA_bulletproofs(object): |
|||
def __init__(self, F, E, g, d): |
|||
self.g = g |
|||
self.F = F |
|||
self.E = E |
|||
self.d = d |
|||
# TODO: |
|||
# Setup: |
|||
self.h = E.random_element() # TMP |
|||
self.gs = random_values(E, d) |
|||
self.hs = random_values(E, d) |
|||
|
|||
# a: aᵢ ∈ 𝔽 coefficients of p(X) |
|||
# r: blinding factor |
|||
def commit(self, a, b): |
|||
P = inner_product_point(a, self.gs) + inner_product_point(b, self.hs) |
|||
return P |
|||
|
|||
def evaluate(self, a, x_powers): |
|||
return inner_product_field(a, x_powers) |
|||
|
|||
def ipa(self, a_, b_, u, U): |
|||
G = self.gs |
|||
H = self.hs |
|||
a = a_ |
|||
b = b_ |
|||
|
|||
k = int(math.log(self.d, 2)) |
|||
L = [None] * k |
|||
R = [None] * k |
|||
|
|||
for j in reversed(range(0, k)): |
|||
m = len(a)/2 |
|||
a_lo = a[:m] |
|||
a_hi = a[m:] |
|||
b_lo = b[:m] |
|||
b_hi = b[m:] |
|||
H_lo = H[:m] |
|||
H_hi = H[m:] |
|||
G_lo = G[:m] |
|||
G_hi = G[m:] |
|||
|
|||
# Lⱼ = <a'ₗₒ, G'ₕᵢ> + [lⱼ] H + [<a'ₗₒ, b'ₕᵢ>] U |
|||
L[j] = inner_product_point(a_lo, G_hi) + inner_product_point(b_hi, H_lo) + int(inner_product_field(a_lo, b_hi)) * U |
|||
# Rⱼ = <a'ₕᵢ, G'ₗₒ> + [rⱼ] H + [<a'ₕᵢ, b'ₗₒ>] U |
|||
R[j] = inner_product_point(a_hi, G_lo) + inner_product_point(b_lo, H_hi) + int(inner_product_field(a_hi, b_lo)) * U |
|||
|
|||
# use the random challenge uⱼ ∈ 𝕀 generated by the verifier |
|||
u_ = u[j] # uⱼ |
|||
u_inv = u[j]^(-1) # uⱼ⁻¹ |
|||
|
|||
a = vec_add(vec_scalar_mul_field(a_lo, u_), vec_scalar_mul_field(a_hi, u_inv)) |
|||
b = vec_add(vec_scalar_mul_field(b_lo, u_inv), vec_scalar_mul_field(b_hi, u_)) |
|||
G = vec_add(vec_scalar_mul_point(G_lo, u_inv), vec_scalar_mul_point(G_hi, u_)) |
|||
H = vec_add(vec_scalar_mul_point(H_lo, u_), vec_scalar_mul_point(H_hi, u_inv)) |
|||
|
|||
assert len(a)==1 |
|||
assert len(b)==1 |
|||
assert len(G)==1 |
|||
assert len(H)==1 |
|||
# a, b, G have length=1 |
|||
# L, R are the "cross-terms" of the inner product |
|||
return a[0], b[0], G[0], H[0], L, R |
|||
|
|||
def verify(self, P, a, v, x_powers, u, U, L, R, b_ipa, G_ipa, H_ipa): |
|||
b = b_ipa |
|||
G = G_ipa |
|||
H = H_ipa |
|||
|
|||
# Q_0 = P' ⋅ ∑ ( [uⱼ²] Lⱼ + [uⱼ⁻²] Rⱼ) |
|||
C = P |
|||
for j in range(len(L)): |
|||
u_ = u[j] # uⱼ |
|||
u_inv = u[j]^(-1) # uⱼ⁻² |
|||
|
|||
# ∑ ( [uⱼ²] Lⱼ + [uⱼ⁻²] Rⱼ) |
|||
C = C + int(u_^2) * L[j] + int(u_inv^2) * R[j] |
|||
|
|||
D = int(a) * G + int(b) * H + int(a * b)*U |
|||
|
|||
return C == D |
|||
|
|||
# IPA_halo implements the modified IPA from the Halo paper: https://eprint.iacr.org/2019/1021.pdf |
|||
class IPA_halo(object): |
|||
def __init__(self, F, E, g, d): |
|||
self.g = g |
|||
self.F = F |
|||
self.E = E |
|||
self.d = d |
|||
|
|||
self.h = E.random_element() # TMP |
|||
self.gs = random_values(E, d) |
|||
self.hs = random_values(E, d) |
|||
print(" h=", self.h) |
|||
print(" G=", self.gs) |
|||
print(" H=", self.hs) |
|||
|
|||
def commit(self, a, r): |
|||
P = inner_product_point(a, self.gs) + r * self.h |
|||
return P |
|||
|
|||
def evaluate(self, a, x_powers): |
|||
return inner_product_field(a, x_powers) |
|||
|
|||
def ipa(self, a_, x_powers, u, U): # prove |
|||
print(" method ipa():") |
|||
G = self.gs |
|||
a = a_ |
|||
b = x_powers |
|||
|
|||
k = int(math.log(self.d, 2)) |
|||
l = [None] * k |
|||
r = [None] * k |
|||
L = [None] * k |
|||
R = [None] * k |
|||
|
|||
for j in reversed(range(0, k)): |
|||
print(" j =", j) |
|||
print(" len(a) = n =", len(a)) |
|||
print(" m = n/2 =", len(a)/2) |
|||
m = len(a)/2 |
|||
a_lo = a[:m] |
|||
a_hi = a[m:] |
|||
b_lo = b[:m] |
|||
b_hi = b[m:] |
|||
G_lo = G[:m] |
|||
G_hi = G[m:] |
|||
|
|||
print(" Split into a_lo,hi b_lo,hi, G_lo,hi:") |
|||
print(" a", a) |
|||
print(" a_lo", a_lo) |
|||
print(" a_hi", a_hi) |
|||
print(" b", b) |
|||
print(" b_lo", b_lo) |
|||
print(" b_hi", b_hi) |
|||
print(" G", G) |
|||
print(" G_lo", G_lo) |
|||
print(" G_hi", G_hi) |
|||
|
|||
l[j] = self.F.random_element() # random blinding factor |
|||
r[j] = self.F.random_element() # random blinding factor |
|||
print(" random blinding factors:") |
|||
print(" l[j]", l[j]) |
|||
print(" r[j]", r[j]) |
|||
|
|||
# Lⱼ = <a'ₗₒ, G'ₕᵢ> + [lⱼ] H + [<a'ₗₒ, b'ₕᵢ>] U |
|||
L[j] = inner_product_point(a_lo, G_hi) + int(l[j]) * self.h + int(inner_product_field(a_lo, b_hi)) * U |
|||
# Rⱼ = <a'ₕᵢ, G'ₗₒ> + [rⱼ] H + [<a'ₕᵢ, b'ₗₒ>] U |
|||
R[j] = inner_product_point(a_hi, G_lo) + int(r[j]) * self.h + int(inner_product_field(a_hi, b_lo)) * U |
|||
|
|||
print(" Compute Lⱼ = <a'ₗₒ, G'ₕᵢ> + [lⱼ] H + [<a'ₗₒ, b'ₕᵢ>] U") |
|||
print(" L[j]", L[j]) |
|||
print(" Compute Rⱼ = <a'ₕᵢ, G'ₗₒ> + [rⱼ] H + [<a'ₕᵢ, b'ₗₒ>] U") |
|||
print(" R[j]", R[j]) |
|||
|
|||
# use the random challenge uⱼ ∈ 𝕀 generated by the verifier |
|||
u_ = u[j] # uⱼ |
|||
u_inv = self.F(u[j])^(-1) # uⱼ⁻¹ |
|||
print(" u_j", u_) |
|||
print(" u_j^-1", u_inv) |
|||
|
|||
a = vec_add(vec_scalar_mul_field(a_lo, u_), vec_scalar_mul_field(a_hi, u_inv)) |
|||
b = vec_add(vec_scalar_mul_field(b_lo, u_inv), vec_scalar_mul_field(b_hi, u_)) |
|||
G = vec_add(vec_scalar_mul_point(G_lo, u_inv), vec_scalar_mul_point(G_hi, u_)) |
|||
print(" new a, b, G") |
|||
print(" a =", a) |
|||
print(" b =", b) |
|||
print(" G =", G) |
|||
|
|||
assert len(a)==1 |
|||
assert len(b)==1 |
|||
assert len(G)==1 |
|||
# a, b, G have length=1 |
|||
# l, r are random blinding factors |
|||
# L, R are the "cross-terms" of the inner product |
|||
return a[0], b[0], G[0], l, r, L, R |
|||
|
|||
def verify(self, P, a, v, x_powers, r, u, U, lj, rj, L, R, b_ipa, G_ipa): |
|||
print("methid verify()") |
|||
# b = x_powers |
|||
# G = self.gs |
|||
b = b_ipa # TODO b_0 & G_0 will be computed by the client |
|||
G = G_ipa |
|||
|
|||
# k = int(math.log(self.d, 2)) |
|||
# s = build_s_from_us(u, k) |
|||
|
|||
# synthetic blinding factor |
|||
# r' = r + ∑ ( lⱼ uⱼ² + rⱼ uⱼ⁻²) |
|||
print(" synthetic blinding factor r' = r + ∑ ( lⱼ uⱼ² + rⱼ uⱼ⁻²)") |
|||
r_ = r |
|||
print(" r_ =", r_) |
|||
# Q_0 = P' ⋅ ∑ ( [uⱼ²] Lⱼ + [uⱼ⁻²] Rⱼ) |
|||
print(" Q_0 = P' ⋅ ∑ ( [uⱼ²] Lⱼ + [uⱼ⁻²] Rⱼ)") |
|||
Q_0 = P |
|||
print(" Q_0 =", Q_0) |
|||
for j in range(len(u)): |
|||
print(" j =", j) |
|||
u_ = u[j] # uⱼ |
|||
u_inv = u[j]^(-1) # uⱼ⁻² |
|||
|
|||
# ∑ ( [uⱼ²] Lⱼ + [uⱼ⁻²] Rⱼ) |
|||
Q_0 = Q_0 + int(u[j]^2) * L[j] + int(u_inv^2) * R[j] |
|||
print(" Q_0 =", Q_0) |
|||
|
|||
r_ = r_ + lj[j] * (u_^2) + rj[j] * (u_inv^2) |
|||
print(" r_ =", r_) |
|||
|
|||
Q_1 = int(a) * G + int(r_) * self.h + int(a * b)*U |
|||
print(" Q_1", Q_1) |
|||
# Q_1_ = int(a) * (G + int(b)*U) + int(r_) * self.h |
|||
|
|||
return Q_0 == Q_1 |
|||
|
|||
|
|||
# def build_s_from_us(u, k): |
|||
# s = None*k |
|||
# for i in range(k): |
|||
# e = 1 |
|||
# for j in range(k): |
|||
# e = e*u[j] |
|||
# # s[i] = |
|||
# return s |
|||
|
|||
|
|||
|
|||
|
|||
def powers_of(g, d): |
|||
r = [None] * d |
|||
for i in range(d): |
|||
r[i] = g^i |
|||
return r |
|||
|
|||
|
|||
def multiples_of(g, d): |
|||
r = [None] * d |
|||
for i in range(d): |
|||
r[i] = g*i |
|||
return r |
|||
|
|||
def random_values(G, d): |
|||
r = [None] * d |
|||
for i in range(d): |
|||
r[i] = G.random_element() |
|||
return r |
|||
|
|||
def inner_product_field(a, b): |
|||
assert len(a) == len(b) |
|||
c = 0 |
|||
for i in range(len(a)): |
|||
c = c + a[i] * b[i] |
|||
|
|||
return c |
|||
|
|||
def inner_product_point(a, b): |
|||
assert len(a) == len(b) |
|||
c = 0 |
|||
for i in range(len(a)): |
|||
c = c + int(a[i]) * b[i] |
|||
|
|||
return c |
|||
|
|||
def vec_add(a, b): |
|||
assert len(a) == len(b) |
|||
return [x + y for x, y in zip(a, b)] |
|||
|
|||
def vec_mul(a, b): |
|||
assert len(a) == len(b) |
|||
return [x * y for x, y in zip(a, b)] |
|||
|
|||
def vec_scalar_mul_field(a, n): |
|||
r = [None]*len(a) |
|||
for i in range(len(a)): |
|||
r[i] = a[i]*n |
|||
return r |
|||
|
|||
def vec_scalar_mul_point(a, n): |
|||
r = [None]*len(a) |
|||
for i in range(len(a)): |
|||
r[i] = a[i]*int(n) |
|||
return r |
|||
|
|||
|
@ -0,0 +1,161 @@ |
|||
import unittest, operator |
|||
load("ipa.sage") |
|||
|
|||
# Halo paper: https://eprint.iacr.org/2019/1021.pdf |
|||
# Bulletproofs paper: https://eprint.iacr.org/2017/1066.pdf |
|||
|
|||
# Ethereum elliptic curve |
|||
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F |
|||
a = 0 |
|||
b = 7 |
|||
Fp = GF(p) |
|||
E = EllipticCurve(Fp, [a,b]) |
|||
GX = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798 |
|||
GY = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8 |
|||
g = E(GX,GY) |
|||
n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 |
|||
h = 1 |
|||
q = g.order() |
|||
Fq = GF(q) |
|||
|
|||
# simplier curve values |
|||
# p = 19 |
|||
# Fp = GF(p) |
|||
# E = EllipticCurve(Fp,[0,3]) |
|||
# g = E(1, 2) |
|||
# q = g.order() |
|||
# Fq = GF(q) |
|||
|
|||
print(E) |
|||
print(Fq) |
|||
assert is_prime(p) |
|||
assert is_prime(q) |
|||
assert g * q == 0 |
|||
|
|||
class TestUtils(unittest.TestCase): |
|||
def test_vecs(self): |
|||
a = [1, 2, 3, 4, 5] |
|||
b = [1, 2, 3, 4, 5] |
|||
|
|||
c = vec_scalar_mul_field(a, 10) |
|||
assert c == [10, 20, 30, 40, 50] |
|||
|
|||
c = inner_product_field(a, b) |
|||
assert c == 55 |
|||
|
|||
# check that <a, b> with b = (1, x, x^2, ..., x^{d-1}) is the same |
|||
# than evaluating p(x) with coefficients a_i, at x |
|||
a = [Fq(1), Fq(2), Fq(3), Fq(4), Fq(5), Fq(6), Fq(7), Fq(8)] |
|||
z = Fq(3) |
|||
b = powers_of(z, 8) |
|||
c = inner_product_field(a, b) |
|||
|
|||
x = PolynomialRing(Fq, 'x').gen() |
|||
px = 1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7 |
|||
assert c == px(x=z) |
|||
|
|||
|
|||
class TestIPA_bulletproofs(unittest.TestCase): |
|||
def test_inner_product(self): |
|||
d = 8 |
|||
ipa = IPA_bulletproofs(Fq, E, g, d) |
|||
|
|||
# prover |
|||
# p(x) = 1 + 2x + 3x² + 4x³ + 5x⁴ + 6x⁵ + 7x⁶ + 8x⁷ |
|||
a = [ipa.F(1), ipa.F(2), ipa.F(3), ipa.F(4), ipa.F(5), ipa.F(6), ipa.F(7), ipa.F(8)] |
|||
x = ipa.F(3) |
|||
b = powers_of(x, ipa.d) # = b |
|||
|
|||
# prover |
|||
P = ipa.commit(a, b) |
|||
print("commit", P) |
|||
v = ipa.evaluate(a, b) |
|||
print("v", v) |
|||
|
|||
# verifier |
|||
# r = int(ipa.F.random_element()) |
|||
|
|||
# verifier generate random challenges {uᵢ} ∈ 𝕀 and U ∈ 𝔾 |
|||
U = ipa.E.random_element() |
|||
k = int(math.log(d, 2)) |
|||
u = [None] * k |
|||
for j in reversed(range(0, k)): |
|||
u[j] = ipa.F.random_element() |
|||
while (u[j] == 0): # prevent u[j] from being 0 |
|||
u[j] = ipa.F.random_element() |
|||
|
|||
P = P + int(inner_product_field(a, b)) * U |
|||
|
|||
# prover |
|||
a_ipa, b_ipa, G_ipa, H_ipa, L, R = ipa.ipa(a, b, u, U) |
|||
|
|||
# verifier |
|||
print("P", P) |
|||
print("a_ipa", a_ipa) |
|||
verif = ipa.verify(P, a_ipa, v, b, u, U, L, R, b_ipa, G_ipa, H_ipa) |
|||
print("Verification:", verif) |
|||
assert verif == True |
|||
|
|||
|
|||
class TestIPA_halo(unittest.TestCase): |
|||
def test_homomorphic_property(self): |
|||
ipa = IPA_halo(Fq, E, g, 5) |
|||
|
|||
a = [1, 2, 3, 4, 5] |
|||
b = [1, 2, 3, 4, 5] |
|||
c = vec_add(a, b) |
|||
assert c == [2,4,6,8,10] |
|||
|
|||
r = int(ipa.F.random_element()) |
|||
s = int(ipa.F.random_element()) |
|||
vc_a = ipa.commit(a, r) |
|||
vc_b = ipa.commit(b, s) |
|||
|
|||
# com(a, r) + com(b, s) == com(a+b, r+s) |
|||
expected_vc_c = ipa.commit(vec_add(a, b), r+s) |
|||
vc_c = vc_a + vc_b |
|||
assert vc_c == expected_vc_c |
|||
|
|||
def test_inner_product(self): |
|||
d = 8 |
|||
ipa = IPA_halo(Fq, E, g, d) |
|||
|
|||
# prover |
|||
# p(x) = 1 + 2x + 3x² + 4x³ + 5x⁴ + 6x⁵ + 7x⁶ + 8x⁷ |
|||
a = [ipa.F(1), ipa.F(2), ipa.F(3), ipa.F(4), ipa.F(5), ipa.F(6), ipa.F(7), ipa.F(8)] |
|||
x = ipa.F(3) |
|||
x_powers = powers_of(x, ipa.d) # = b |
|||
|
|||
# verifier |
|||
r = int(ipa.F.random_element()) |
|||
|
|||
# prover |
|||
P = ipa.commit(a, r) |
|||
print("commit", P) |
|||
v = ipa.evaluate(a, x_powers) |
|||
print("v", v) |
|||
|
|||
# verifier generate random challenges {uᵢ} ∈ 𝕀 and U ∈ 𝔾 |
|||
U = ipa.E.random_element() |
|||
k = int(math.log(ipa.d, 2)) |
|||
u = [None] * k |
|||
for j in reversed(range(0, k)): |
|||
u[j] = ipa.F.random_element() |
|||
while (u[j] == 0): # prevent u[j] from being 0 |
|||
u[j] = ipa.F.random_element() |
|||
|
|||
P = P + int(v) * U |
|||
|
|||
# prover |
|||
a_ipa, b_ipa, G_ipa, lj, rj, L, R = ipa.ipa(a, x_powers, u, U) |
|||
|
|||
# verifier |
|||
print("P", P) |
|||
print("a_ipa", a_ipa) |
|||
print("\n Verify:") |
|||
verif = ipa.verify(P, a_ipa, v, x_powers, r, u, U, lj, rj, L, R, b_ipa, G_ipa) |
|||
assert verif == True |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
unittest.main() |