@ -0,0 +1,94 @@ |
|||||
|
from hashlib import sha256 |
||||
|
|
||||
|
# Ring Signatures |
||||
|
# bLSAG: Back’s Linkable Spontaneous Anonymous Group signatures |
||||
|
|
||||
|
def hashToPoint(a): |
||||
|
# TODO use a proper hash-to-point |
||||
|
h = sha256((str(a)).encode('utf-8')) |
||||
|
r = int(h.hexdigest(), 16) * g |
||||
|
return r |
||||
|
|
||||
|
def hash(R, m, A, B, q): |
||||
|
h = sha256(( |
||||
|
str(R) + str(m) + str(A) + str(B) |
||||
|
).encode('utf-8')) |
||||
|
r = int(h.hexdigest(), 16) |
||||
|
return int(mod(r, q)) |
||||
|
|
||||
|
def print_ring(a): |
||||
|
print("ring of c's:") |
||||
|
for i in range(len(a)): |
||||
|
print(i, a[i]) |
||||
|
print("") |
||||
|
|
||||
|
class Prover(object): |
||||
|
def __init__(self, F, g): |
||||
|
self.F = F # Z_p |
||||
|
self.g = g # elliptic curve generator |
||||
|
self.q = self.g.order() # order of group |
||||
|
|
||||
|
def new_key(self): |
||||
|
self.w = int(self.F.random_element()) |
||||
|
self.K = self.g * self.w |
||||
|
return self.K |
||||
|
|
||||
|
def sign(self, m, R): |
||||
|
# determine pi (the position of signer's public key in R |
||||
|
pi = -1 |
||||
|
for i in range(len(R)): |
||||
|
if self.K == R[i]: |
||||
|
pi = i |
||||
|
break |
||||
|
assert pi>=0 |
||||
|
|
||||
|
a = int(self.F.random_element()) |
||||
|
r = [None] * len(R) |
||||
|
# for i \in {1, 2, ..., n} \ {i=pi} |
||||
|
for i in range(0, len(R)): |
||||
|
if i==pi: |
||||
|
continue |
||||
|
|
||||
|
r[i] = int(mod(int(self.F.random_element()), self.q)) |
||||
|
|
||||
|
c = [None] * len(R) |
||||
|
# c_{pi+1} |
||||
|
pi1 = mod(pi + 1, len(R)) |
||||
|
c[pi1] = hash(R, m, a * self.g, a * hashToPoint(R[pi]), self.q) |
||||
|
|
||||
|
key_image = self.w * hashToPoint(self.K) |
||||
|
|
||||
|
# do c_{i+1} from i=pi+1 to pi-1: |
||||
|
# for j in range(0, len(R)-1): |
||||
|
for j in range(0, len(R)-1): |
||||
|
i = mod(pi1+j, len(R)) |
||||
|
i1 = mod(pi1+j +1, len(R)) |
||||
|
|
||||
|
c[i1] = hash(R, m, r[i] * self.g + c[i] * R[i], r[i] * hashToPoint(R[i]) + c[i] * key_image, self.q) |
||||
|
|
||||
|
# compute r_pi |
||||
|
r[pi] = int(mod(a - c[pi] * self.w, self.q)) |
||||
|
print_ring(c) |
||||
|
|
||||
|
return [c[0], r] |
||||
|
|
||||
|
def verify(g, R, m, key_image, sig): |
||||
|
q = g.order() |
||||
|
c1 = sig[0] |
||||
|
r = sig[1] |
||||
|
assert len(R) == len(r) |
||||
|
|
||||
|
# check that key_image \in G (EC), by l * key_image == 0 |
||||
|
assert q * key_image == 0 # in sage 0 EC point is interpreted as (0:1:0) |
||||
|
|
||||
|
|
||||
|
# for i \in 1,2,...,n |
||||
|
c = [None] * len(R) |
||||
|
c[0] = c1 |
||||
|
for j in range(0, len(R)): |
||||
|
i = mod(j, len(R)) |
||||
|
i1 = mod(j+1, len(R)) |
||||
|
c[i1] = hash(R, m, r[i] * g + c[i] * R[i], r[i] * hashToPoint(R[i]) + c[i] * key_image, q) |
||||
|
|
||||
|
print_ring(c) |
||||
|
assert c1 == c[0] |
@ -0,0 +1,53 @@ |
|||||
|
import unittest, operator |
||||
|
load("ring-signatures.sage") |
||||
|
|
||||
|
# ethereum elliptic curve |
||||
|
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F |
||||
|
a = 0 |
||||
|
b = 7 |
||||
|
F = GF(p) |
||||
|
E = EllipticCurve(F, [a,b]) |
||||
|
GX = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798 |
||||
|
GY = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8 |
||||
|
g = E(GX,GY) |
||||
|
n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 |
||||
|
h = 1 |
||||
|
q = g.order() |
||||
|
assert is_prime(p) |
||||
|
assert is_prime(q) |
||||
|
assert g * q == 0 |
||||
|
|
||||
|
|
||||
|
class TestRingSignatures(unittest.TestCase): |
||||
|
def test_blSAG_ring_of_5(self): |
||||
|
test_blSAG(5, 3) |
||||
|
def test_blSAG_ring_of_20(self): |
||||
|
test_blSAG(20, 14) |
||||
|
|
||||
|
def test_blSAG(ring_size, pi): |
||||
|
print(f"[blSAG] Testing with a ring of {ring_size} keys") |
||||
|
prover = Prover(F, g) |
||||
|
n = ring_size |
||||
|
R = [None] * n |
||||
|
|
||||
|
# generate prover's key pair |
||||
|
K_pi = prover.new_key() |
||||
|
|
||||
|
# generate other n public keys |
||||
|
for i in range(0, n): |
||||
|
R[i] = g * i |
||||
|
|
||||
|
# set K_pi |
||||
|
R[pi] = K_pi |
||||
|
|
||||
|
# sign m |
||||
|
m = 1234 |
||||
|
print("sign") |
||||
|
sig = prover.sign(m, R) |
||||
|
|
||||
|
print("verify") |
||||
|
key_image = prover.w * hashToPoint(prover.K) |
||||
|
verify(g, R, m, key_image, sig) |
||||
|
|
||||
|
if __name__ == '__main__': |
||||
|
unittest.main() |
@ -1,5 +1,8 @@ |
|||||
from hashlib import sha256 |
from hashlib import sha256 |
||||
|
|
||||
|
# Implementation of Sigma protocol & OR proofs |
||||
|
|
||||
|
|
||||
def hash_two_points(a, b): |
def hash_two_points(a, b): |
||||
h = sha256((str(a)+str(b)).encode('utf-8')) |
h = sha256((str(a)+str(b)).encode('utf-8')) |
||||
return int(h.hexdigest(), 16) |
return int(h.hexdigest(), 16) |
@ -1,5 +1,7 @@ |
|||||
import unittest, operator |
import unittest, operator |
||||
load("crypto.sage") |
|
||||
|
load("sigma.sage") |
||||
|
|
||||
|
# Tests for Sigma protocol & OR proofs |
||||
|
|
||||
|
|
||||
# ethereum elliptic curve |
# ethereum elliptic curve |