$$Com(v)=\langle g, v \rangle=g_1\cdot v_1+ g_2\cdot v_2+\ldots+ g_n \cdot v_n$$
%\pause
RLC\\
RLC:\\
Let $v_1, v_2\in\mathbb{F}_r^n$, set $cm_1= Com(v_1),~ cm_2=Com(v_2)$.
\\then,
\begin{align*}
@ -111,7 +110,6 @@
\end{frame}
\section[Folding]{Folding}
\begin{frame}{Relaxed R1CS}
R1CS instance: $(\{A, B, C\}\in\mathbb{F}^{n \times n},~ io,~ n,~ l)$, such that for $z=(io \in\mathbb{F}^l, 1, w \in\mathbb{F}^{n-l-1})\in\mathbb{F}^n$,
@ -130,13 +128,16 @@ for $u \in \mathbb{F},~~ E \in \mathbb{F}^n$.
Committed Relaxed R1CS instance: $CI =(\overline{E}, u, \overline{W}, x)$\\
Witness of the instance: $WI=(E, W)$
\vspace{0.5cm}
\footnotesize{(We don't have time for it now, but there is a simple reasoning for the RelaxedR1CS usage explained in Nova paper)}
\end{frame}
\begin{frame}{NIFS - Non Interactive Folding Scheme}
\item gas costs (DeciderEthCircuit proof): $\sim800k$ gas
\begin{itemize}
\item mostly from G16, KZG10, public inputs processing
\item will be reduced by hashing the public inputs
\item expect to get it down to $< 600k$ gas.
\end{itemize}
\end{itemize}
\vspace{0.3cm}
Recall, this proof is proving that applying $n$ times the function $F$ (the circuit that we're folding) to an initial state $z_0$ results in the state $z_n$.
\\In Srinath Setty words, you can prove practically unbounded computation onchain by 800k gas (and soon $< 600k$).