|
|
@ -0,0 +1,353 @@ |
|
|
|
\documentclass{beamer} |
|
|
|
|
|
|
|
\mode<presentation> |
|
|
|
{ |
|
|
|
\usetheme{Frankfurt} |
|
|
|
\usecolortheme{dove} %% grey scale |
|
|
|
\useinnertheme{circles} |
|
|
|
\setbeamercovered{transparent} |
|
|
|
} |
|
|
|
|
|
|
|
\hypersetup{ |
|
|
|
colorlinks, |
|
|
|
citecolor=black, |
|
|
|
filecolor=black, |
|
|
|
linkcolor=black, |
|
|
|
urlcolor=blue |
|
|
|
} |
|
|
|
\usepackage{graphicx} |
|
|
|
\usepackage{pgf-umlsd} % diagrams |
|
|
|
|
|
|
|
\setbeamertemplate{itemize}{$\circ$} |
|
|
|
\setbeamertemplate{itemize items}{$\circ$} |
|
|
|
|
|
|
|
\beamertemplatenavigationsymbolsempty %% no navigation bar |
|
|
|
|
|
|
|
\setbeamertemplate{footline}{\hspace*{.1cm}\scriptsize{ |
|
|
|
\hspace*{50pt} \hfill\insertframenumber/\inserttotalframenumber\hspace*{.1cm}\vspace*{.1cm}}} |
|
|
|
|
|
|
|
\setbeamertemplate{caption}[numbered] |
|
|
|
\setbeamerfont{caption}{size=\tiny} |
|
|
|
|
|
|
|
% message between threads. From https://tex.stackexchange.com/a/174765 |
|
|
|
% Example: |
|
|
|
% \bloodymess[delay]{sender}{message content}{receiver}{DIR}{start note}{end note} |
|
|
|
\newcommand{\bloodymess}[7][0]{ |
|
|
|
\stepcounter{seqlevel} |
|
|
|
\path |
|
|
|
(#2)+(0,-\theseqlevel*\unitfactor-0.7*\unitfactor) node (mess from) {}; |
|
|
|
\addtocounter{seqlevel}{#1} |
|
|
|
\path |
|
|
|
(#4)+(0,-\theseqlevel*\unitfactor-0.7*\unitfactor) node (mess to) {}; |
|
|
|
\draw[->,>=angle 60] (mess from) -- (mess to) node[midway, above] |
|
|
|
{#3}; |
|
|
|
|
|
|
|
\if R#5 |
|
|
|
\node (\detokenize{#3} from) at (mess from) {\llap{#6~}}; |
|
|
|
\node (\detokenize{#3} to) at (mess to) {\rlap{~#7}}; |
|
|
|
\else\if L#5 |
|
|
|
\node (\detokenize{#3} from) at (mess from) {\rlap{~#6}}; |
|
|
|
\node (\detokenize{#3} to) at (mess to) {\llap{#7~}}; |
|
|
|
\else |
|
|
|
\node (\detokenize{#3} from) at (mess from) {#6}; |
|
|
|
\node (\detokenize{#3} to) at (mess to) {#7}; |
|
|
|
\fi |
|
|
|
\fi |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
%Information to be included in the title page: |
|
|
|
\title{HyperNova's multifolding overview} |
|
|
|
\author{} |
|
|
|
\date{\scriptsize{2023-06-22\\\href{https://0xparc.org}{0xPARC} Novi team}} |
|
|
|
|
|
|
|
\begin{document} |
|
|
|
|
|
|
|
\frame{\titlepage} |
|
|
|
|
|
|
|
\section[Overview]{Overview} |
|
|
|
|
|
|
|
\begin{frame}{Multifolding - Overview} |
|
|
|
|
|
|
|
\begin{tiny} |
|
|
|
\begin{enumerate} |
|
|
|
\item[1.] $V \rightarrow P: \gamma \in^R \mathbb{F},~ \beta \in^R \mathbb{F}^s$ |
|
|
|
\item[2.] $V: r_x' \in^R \mathbb{F}^s$ |
|
|
|
\item[3.] $V \leftrightarrow P$: sum-check protocol: |
|
|
|
$c \leftarrow \langle P, V(r_x') \rangle (g, s, d+1, \underbrace{\sum_{j \in [t]} \gamma^j \cdot v_j}_\text{T})$, where: |
|
|
|
\begin{align*} |
|
|
|
g(x) &:= \underbrace{\left( \sum_{j \in [t]} \gamma^j \cdot L_j(x) \right)}_\text{LCCCS check} + \underbrace{\gamma^{t+1} \cdot Q(x)}_\text{CCCS check}\\ |
|
|
|
L_j(x) &:= \widetilde{eq}(r_x, x) \cdot \left( |
|
|
|
\underbrace{\sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_1(y)}_\text{LCCCS check} |
|
|
|
\right)\\ |
|
|
|
Q(x) := &\widetilde{eq}(\beta, x) \cdot \left( |
|
|
|
\underbrace{ \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \left( \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_2(y) \right) }_\text{CCCS check} |
|
|
|
\right) |
|
|
|
\end{align*} |
|
|
|
\end{enumerate} |
|
|
|
\end{tiny} |
|
|
|
|
|
|
|
\end{frame} |
|
|
|
|
|
|
|
\begin{frame}{Multifolding - Overview} |
|
|
|
|
|
|
|
\begin{tiny} |
|
|
|
\begin{enumerate} |
|
|
|
\item[4.] $P \rightarrow V$: $\left( (\sigma_1, \ldots, \sigma_t), (\theta_1, \ldots, \theta_t) \right)$, where $\forall j \in [t]$, |
|
|
|
$$\sigma_j = \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \widetilde{z}_1(y)$$ |
|
|
|
$$\theta_j = \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \widetilde{z}_2(y)$$ |
|
|
|
\item[5.] V: $e_1 \leftarrow \widetilde{eq}(r_x, r_x')$, $e_2 \leftarrow \widetilde{eq}(\beta, r_x')$\\ |
|
|
|
check: |
|
|
|
$$c = \left(\sum_{j \in [t]} \gamma^j \cdot e_1 \cdot \sigma_j \right) + \gamma^{t+1} \cdot e_2 \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_j \right)$$ |
|
|
|
\item[6.] $V \rightarrow P: \rho \in^R \mathbb{F}$ |
|
|
|
\item[7.] $V, P$: output the folded LCCCS instance $(C', u', \mathsf{x}', r_x', v_1', \ldots, v_t')$, where $\forall i \in [t]$: |
|
|
|
\begin{align*} |
|
|
|
C' &\leftarrow C_1 + \rho \cdot C_2\\ |
|
|
|
u' &\leftarrow u + \rho \cdot 1\\ |
|
|
|
\mathsf{x}' &\leftarrow \mathsf{x}_1 + \rho \cdot \mathsf{x}_2\\ |
|
|
|
v_i' &\leftarrow \sigma_i + \rho \cdot \theta_i |
|
|
|
\end{align*} |
|
|
|
\item[8.] $P$: output folded witness and the folded $r_w'$: |
|
|
|
\begin{align*} |
|
|
|
\widetilde{w}' &\leftarrow \widetilde{w}_1 + \rho \cdot \widetilde{w}_2\\ |
|
|
|
r_w' &\leftarrow r_{w_1} + \rho \cdot r_{w_2} |
|
|
|
\end{align*} |
|
|
|
\end{enumerate} |
|
|
|
\end{tiny} |
|
|
|
|
|
|
|
\end{frame} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin{frame}{Multifolding - Overview} |
|
|
|
\begin{tiny} |
|
|
|
\begin{center} |
|
|
|
\begin{sequencediagram} |
|
|
|
\newinst[1]{p}{Prover} |
|
|
|
\newinst[3]{v}{Verifier} |
|
|
|
|
|
|
|
\bloodymess[1]{v}{$\gamma,~\beta,~r_x'$}{p}{L}{ |
|
|
|
\shortstack{ |
|
|
|
$\gamma \in \mathbb{F},~ \beta \in \mathbb{F}^s$\\ |
|
|
|
$r_x' \in \mathbb{F}^s$ |
|
|
|
} |
|
|
|
}{} |
|
|
|
\bloodymess[1]{p}{$c,~ \pi_{SC}$}{v}{R}{sum-check prove}{sum-check verify} |
|
|
|
\bloodymess[1]{p}{$\{\sigma_j\},~\{\theta_j\}$}{v}{R}{compute $\{\sigma_j\}, \{\theta_j\}~ \forall j \in [t]$}{verify $c$ with $\{\sigma_j\}, \{\theta_j\}$ relation} |
|
|
|
\bloodymess[1]{v}{$\rho$}{p}{L}{$\rho \in^R \mathbb{F}$}{} |
|
|
|
\callself[0]{p}{fold LCCCS instance}{p} |
|
|
|
\prelevel |
|
|
|
\callself[0]{v}{fold LCCCS instance}{v} |
|
|
|
\callself[0]{p}{fold $\widetilde{w}, r_w$}{p} |
|
|
|
\end{sequencediagram} |
|
|
|
\end{center} |
|
|
|
\end{tiny} |
|
|
|
\end{frame} |
|
|
|
|
|
|
|
|
|
|
|
\section[Checks]{Checks} |
|
|
|
|
|
|
|
\begin{tiny} |
|
|
|
\begin{frame}{LCCCS checks} |
|
|
|
$$ |
|
|
|
\color{gray}{g(x) :=} |
|
|
|
\color{black}{\underbrace{\left( \sum_{j \in [t]} \gamma^j \cdot L_j(x) \right)}_\text{LCCCS} } |
|
|
|
\color{gray}{+ \gamma^{t+1} \cdot Q(x)} |
|
|
|
$$ |
|
|
|
$$ |
|
|
|
L_j(x) := \widetilde{eq}(r_x, x) \cdot \left( |
|
|
|
\underbrace{\sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_1(y)}_\text{LCCCS check} |
|
|
|
\right) |
|
|
|
$$ |
|
|
|
|
|
|
|
|
|
|
|
Notice that, $v_j$ from LCCCS relation check |
|
|
|
|
|
|
|
\begin{align*} |
|
|
|
v_j &= \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(r_x, y) \cdot \widetilde{z}_1(y)\\ |
|
|
|
&= \sum_{x \in \{0,1\}^s} |
|
|
|
\widetilde{eq}(r_x, x) \cdot \left( \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_1(y) \right)\\ |
|
|
|
&= \sum_{x \in \{0,1\}^s} L_j(x) |
|
|
|
\end{align*} |
|
|
|
|
|
|
|
\end{frame} |
|
|
|
\begin{frame}{CCCS checks} |
|
|
|
$$ |
|
|
|
\color{gray}{g(x) := \left( \sum_{j \in [t]} \gamma^j \cdot L_j(x) \right) +} |
|
|
|
\color{black}{\underbrace{\gamma^{t+1} \cdot Q(x)}_\text{CCCS}} |
|
|
|
$$ |
|
|
|
$$Q(x) := \widetilde{eq}(\beta, x) \cdot \left( |
|
|
|
\underbrace{ \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \left( \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_2(y) \right) }_\text{CCCS check} |
|
|
|
\right)$$ |
|
|
|
|
|
|
|
Recall that Spartan's $\widetilde{F}_{io}(x)$ here is $q(x)$, so we're doing the same Spartan check: |
|
|
|
|
|
|
|
$$ |
|
|
|
0 =G(\beta) = \sum_{x \in \{0,1\}^s} Q(x) = \sum_{x \in \{0,1\}^s} eq(\beta, x) \cdot q(x)$$ |
|
|
|
$$= \sum_{x \in \{0,1\}^s} |
|
|
|
\underbrace{\widetilde{eq}(\beta , x) \cdot |
|
|
|
\overbrace{ |
|
|
|
\sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \left( \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_2(y) \right) |
|
|
|
}^{q(x)} |
|
|
|
}_{Q(x)} |
|
|
|
$$ |
|
|
|
|
|
|
|
\end{frame} |
|
|
|
|
|
|
|
|
|
|
|
\begin{frame}{Verifier checks} |
|
|
|
\textcolor{gray}{ |
|
|
|
Recall: |
|
|
|
$$g(x) := \left( \sum_{j \in [t]} \gamma^j \cdot L_j(x) \right) + \gamma^{t+1} \cdot Q(x)$$ |
|
|
|
$$c = \left(\sum_{j \in [t]} \gamma^j \cdot e_1 \cdot \sigma_j \right) + \gamma^{t+1} \cdot e_2 \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_j \right)$$ |
|
|
|
} |
|
|
|
|
|
|
|
We can see now that V's check in step 5, |
|
|
|
|
|
|
|
\begin{align*} |
|
|
|
c &= |
|
|
|
\left( \sum_{j \in [t]} \gamma^j \cdot \overbrace{e_1 \cdot \sigma_j}^{L_j(r_x')} \right) + \gamma^{t+1} \cdot \overbrace{e_2 \cdot \sum_{i \in [q]} c_i \prod_{j \in S_i} \theta_j}^{Q(x)}\\ |
|
|
|
&= \left( \sum_{j \in [t]} \gamma^j \cdot L_j(r_x') \right) + \gamma^{t+1} \cdot Q(r_x')\\ |
|
|
|
&= g(r_x') |
|
|
|
\end{align*} |
|
|
|
|
|
|
|
where $e_1 = \widetilde{eq}(r_x, r_x')$, $e_2=\widetilde{eq}(\beta, r_x')$. |
|
|
|
\end{frame} |
|
|
|
\end{tiny} |
|
|
|
|
|
|
|
\section[Multiple instances]{Multiple instances} |
|
|
|
|
|
|
|
\begin{footnotesize} |
|
|
|
\begin{frame}{Multifolding multiple instances} |
|
|
|
Hypernova paper: $\mu=1, \nu=1$ \emph{(ie. 1 LCCCS instance and 1 CCCS instance)} |
|
|
|
|
|
|
|
\vspace{1cm} |
|
|
|
In next slides |
|
|
|
\begin{itemize} |
|
|
|
\item example with: $\color{orange}{LCCCS: \mu = 2},~ \color{blue}{CCCS: \nu = 2}$ |
|
|
|
\item generalized equations for $\mu,~\nu$ |
|
|
|
\end{itemize} |
|
|
|
|
|
|
|
Let $z_1,~ \color{orange}{z_2}$ be the two LCCCS instances, and $z_3,~ \color{blue}{z_4}$ be the two CCCS instances |
|
|
|
|
|
|
|
\end{frame} |
|
|
|
\end{footnotesize} |
|
|
|
|
|
|
|
\begin{tiny} |
|
|
|
\begin{frame} |
|
|
|
In \emph{step 3}, |
|
|
|
|
|
|
|
\begin{align*} |
|
|
|
g(x) &:= \left( \sum_{j \in [t]} \gamma^j \cdot L_{1,j}(x) + \textcolor{orange}{\gamma^{t+j} \cdot L_{2,j}(x)} \right) |
|
|
|
+ \gamma^{2t+1} \cdot Q_1(x) + \textcolor{cyan}{\gamma^{2t+2} \cdot Q_2(x)} \\ |
|
|
|
&L_{1,j}(x) := \widetilde{eq}(r_{1,x}, x) \cdot \left( |
|
|
|
\sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_1(y) |
|
|
|
\right)\\ |
|
|
|
&\textcolor{orange}{L_{2,j}(x)} := \widetilde{eq}(\textcolor{orange}{r_{2,x}}, x) \cdot \left( |
|
|
|
\sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(x, y) \cdot \textcolor{orange}{\widetilde{z}_2(y)} |
|
|
|
\right)\\ |
|
|
|
&Q_1(x) := \widetilde{eq}(\beta, x) \cdot \left( |
|
|
|
\sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \left( \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_3(y) \right)\right)\\ |
|
|
|
&\textcolor{cyan}{Q_2(x)} := \widetilde{eq}(\textcolor{cyan}{\beta}, x) \cdot \left( |
|
|
|
\sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \left( \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(x, y) \cdot \textcolor{cyan}{\widetilde{z}_4(y)} \right)\right) |
|
|
|
\end{align*} |
|
|
|
|
|
|
|
\framebox{\begin{minipage}{4.3 in} |
|
|
|
A generic definition of $g(x)$ for $\mu>1~\nu>1$, would be |
|
|
|
|
|
|
|
$$ |
|
|
|
g(x) := \left( \sum_{i \in [\mu]} \left( \sum_{j \in [t]} \gamma^{i \cdot t+j} \cdot L_{i,j}(x) \right) \right) |
|
|
|
+ \left( \sum_{i \in [\nu]} \gamma^{\mu \cdot t + i} \cdot Q_i(x) \right) |
|
|
|
$$ |
|
|
|
\end{minipage}} |
|
|
|
|
|
|
|
Recall, the original $g(x)$ definition was |
|
|
|
$$\textcolor{gray}{g(x) := \left( \sum_{j \in [t]} \gamma^j \cdot L_j(x) \right) + \gamma^{t+1} \cdot Q(x)}$$ |
|
|
|
|
|
|
|
|
|
|
|
\end{frame} |
|
|
|
|
|
|
|
\begin{frame} |
|
|
|
In \emph{step 4}, $P \rightarrow V$: $(\{\sigma_{1,j}\}, \textcolor{orange}{\{\sigma_{2,j}\}}, \{\theta_{1,j}\}, \textcolor{cyan}{\{\theta_{2,j}\}}),~ \text{where} ~\forall j \in [t]$, |
|
|
|
|
|
|
|
$$\sigma_{1,j} = \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \widetilde{z}_1(y)$$ |
|
|
|
$$\textcolor{orange}{\sigma_{2,j}} = \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \textcolor{orange}{\widetilde{z}_2(y)}$$ |
|
|
|
$$\theta_{1,j} = \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \widetilde{z}_3(y)$$ |
|
|
|
$$\textcolor{cyan}{\theta_{2,j}} = \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \textcolor{cyan}{\widetilde{z}_4(y)}$$ |
|
|
|
|
|
|
|
\framebox{\begin{minipage}{4.3 in} |
|
|
|
so in a generic way,\\ |
|
|
|
$P \rightarrow V$: |
|
|
|
$(\{\sigma_{i,j}\}, \{\theta_{k,j}\}),~ \text{where} ~\forall~ j \in [t],~ \forall~ i \in [\mu],~ \forall~ k \in [\nu]$ |
|
|
|
where |
|
|
|
$$\sigma_{i,j} = \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \widetilde{z}_i(y)$$ |
|
|
|
$$\theta_{k,j} = \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \widetilde{z}_{\mu+k}(y)$$ |
|
|
|
\end{minipage}} |
|
|
|
|
|
|
|
\end{frame} |
|
|
|
|
|
|
|
\begin{frame} |
|
|
|
And in \emph{step 5}, $V$ checks |
|
|
|
|
|
|
|
\begin{align*} |
|
|
|
c &= \left(\sum_{j \in [t]} \gamma^j \cdot e_1 \cdot \sigma_{1,j} |
|
|
|
~\textcolor{orange}{+ \gamma^{t+j} \cdot e_2 \cdot \sigma_{2,j}}\right) |
|
|
|
+ \gamma^{2t+1} \cdot e_3 \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_j \right) |
|
|
|
+ \textcolor{cyan}{\gamma^{2t+2} \cdot e_4 \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_j \right)} |
|
|
|
\end{align*} |
|
|
|
|
|
|
|
where |
|
|
|
$e_1 \leftarrow \widetilde{eq}(r_{1,x}, r_x'),~ e_2 \leftarrow \widetilde{eq}(r_{2,x}, r_x')$, $e_3, e_4 \leftarrow \widetilde{eq}(\beta, r_x')$. |
|
|
|
|
|
|
|
\vspace{0.5cm} |
|
|
|
|
|
|
|
\framebox{\begin{minipage}{4.3 in} |
|
|
|
A generic definition of the check would be |
|
|
|
$$ |
|
|
|
c = \sum_{i \in [\mu]} \left(\sum_{j \in [t]} \gamma^{i \cdot t + j} \cdot e_i \cdot \sigma_{i,j} \right) \\ |
|
|
|
+ \sum_{k \in [\nu]} \gamma^{\mu \cdot t+k} \cdot e_k \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_{k,j} \right) |
|
|
|
$$ |
|
|
|
\end{minipage}} |
|
|
|
|
|
|
|
where the original check was\\ |
|
|
|
$\textcolor{gray}{c = \left(\sum_{j \in [t]} \gamma^j \cdot e_1 \cdot \sigma_j \right) + \gamma^{t+1} \cdot e_2 \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_j \right)}$ |
|
|
|
|
|
|
|
\end{frame} |
|
|
|
|
|
|
|
\begin{frame} |
|
|
|
And for the \emph{step 7}, |
|
|
|
\begin{align*} |
|
|
|
C' &\leftarrow C_1 + \rho \cdot C_2 + \rho^2 C_3 + \rho^3 C_4 + \ldots = \sum_{i \in [\mu + \nu]} \rho^i \cdot C_i \\ |
|
|
|
u' &\leftarrow \sum_{i \in [\mu]} \rho^i \cdot u_i + \sum_{i \in [\nu]} \rho^{\mu + i-1} \cdot 1\\ |
|
|
|
\mathsf{x}' &\leftarrow \sum_{i \in [\mu+\nu]} \rho^i \cdot \mathsf{x}_i\\ |
|
|
|
v_i' &\leftarrow \sum_{i \in [\mu]} \rho^i \cdot \sigma_i + \sum_{i \in [\nu]} \rho^{\mu + i-1} \cdot \theta_i\\ |
|
|
|
\end{align*} |
|
|
|
|
|
|
|
and \emph{step 8}, |
|
|
|
\begin{align*} |
|
|
|
\widetilde{w}' &\leftarrow \sum_{i \in [\mu+\nu]} \rho^i\cdot \widetilde{w}_i\\ |
|
|
|
r_w' &\leftarrow \sum_{i \in [\mu+\nu]} \rho^i \cdot r_{w_i}\\ |
|
|
|
\end{align*} |
|
|
|
|
|
|
|
\end{frame} |
|
|
|
|
|
|
|
\end{tiny} |
|
|
|
|
|
|
|
\section[Wrappup]{Wrappup} |
|
|
|
|
|
|
|
\begin{frame} |
|
|
|
\frametitle{Wrappup} |
|
|
|
\begin{itemize} |
|
|
|
\item HyperNova: \href{https://eprint.iacr.org/2023/573}{https://eprint.iacr.org/2023/573} |
|
|
|
\item multifolding PoC on arkworks: \href{https://github.com/privacy-scaling-explorations/multifolding-poc}{github.com/privacy-scaling-explorations/multifolding-poc} |
|
|
|
\end{itemize} |
|
|
|
|
|
|
|
\vspace{2cm} |
|
|
|
\tiny{ |
|
|
|
$$\text{2023-06-22}$$ |
|
|
|
$$\text{\href{https://0xparc.org}{0xPARC} Novi team}$$ |
|
|
|
} |
|
|
|
\end{frame} |
|
|
|
|
|
|
|
\end{document} |