Browse Source

Add BLS signatures on bls12-381

master
arnaucube 2 years ago
parent
commit
24aa7a6305
2 changed files with 126 additions and 0 deletions
  1. +63
    -0
      bls-sigs.sage
  2. +63
    -0
      bls12-381.sage

+ 63
- 0
bls-sigs.sage

@ -0,0 +1,63 @@
# toy implementation of BLS signatures
load("bls12-381.sage")
from hashlib import sha256
def hash(m):
h_output = sha256(str(m).encode('utf-8'))
return int(h_output.hexdigest(), 16)
def hash_to_point(m):
# WARNING this hash-to-point approach should not be used!
h = hash(m)
return G2 * h
pairing = Pairing()
class Signer:
def __init__(self):
self.sk = F1.random_element()
self.pk = self.sk * G1
def sign(self, m):
H = hash_to_point(m)
return self.sk * H
def verify(pk, s, m):
H = hash_to_point(m)
return pairing.pair(G1, s) == pairing.pair(pk, H)
def aggr(points):
R = 0
for i in range(len(points)):
R = R + points[i]
return R
m = 1234
# single signature & verification
user0 = Signer()
s = user0.sign(m)
v = verify(user0.pk, s, m)
assert v
# BLS signature aggregation
n = 10
users = [None]*n
pks = [None]*n
sigs = [None]*n
for i in range(n):
users[i] = Signer()
pks[i] = users[i].pk
sigs[i] = users[i].sign(m)
# aggregate sigs & pks
s_aggr = aggr(sigs)
pk_aggr = aggr(pks)
# verify aggregated signature
v = verify(pk_aggr, s_aggr, m)
assert v

+ 63
- 0
bls12-381.sage

@ -0,0 +1,63 @@
# The code of this file has been adapted from:
# https://github.com/osirislab/CSAW-CTF-2021-Finals/blob/main/crypto/aBoLiSh_taBLeS/chal.sage
#
# ## Example of usage:
# load("bls12-381.sage")
# pairing = Pairing()
# assert pairing.pair(G1 * 3, G2 * 2) == pairing.pair(G1, G2)^6
# BLS12-381 Parameters
# https://github.com/zkcrypto/bls12_381
p = 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab
r = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001
h1 = 0x396c8c005555e1568c00aaab0000aaab
h2 = 0x5d543a95414e7f1091d50792876a202cd91de4547085abaa68a205b2e5a7ddfa628f1cb4d9e82ef21537e293a6691ae1616ec6e786f0c70cf1c38e31c7238e5
# Define base fields
F1 = GF(p)
F2.<u> = GF(p^2, x, x^2 + 1)
F12.<w> = GF(p^12, x, x^12 - 2*x^6 + 2)
# Define the Elliptic Curves
E1 = EllipticCurve(F1, [0, 4])
E2 = EllipticCurve(F2, [0, 4*(1 + u)])
E12 = EllipticCurve(F12, [0, 4])
# Generator of order r in E1 / F1
G1x = 0x17f1d3a73197d7942695638c4fa9ac0fc3688c4f9774b905a14e3a3f171bac586c55e83ff97a1aeffb3af00adb22c6bb
G1y = 0x8b3f481e3aaa0f1a09e30ed741d8ae4fcf5e095d5d00af600db18cb2c04b3edd03cc744a2888ae40caa232946c5e7e1
G1 = E1(G1x, G1y)
# Generator of order r in E2 / F2
G2x0 = 0x24aa2b2f08f0a91260805272dc51051c6e47ad4fa403b02b4510b647ae3d1770bac0326a805bbefd48056c8c121bdb8
G2x1 = 0x13e02b6052719f607dacd3a088274f65596bd0d09920b61ab5da61bbdc7f5049334cf11213945d57e5ac7d055d042b7e
G2y0 = 0xce5d527727d6e118cc9cdc6da2e351aadfd9baa8cbdd3a76d429a695160d12c923ac9cc3baca289e193548608b82801
G2y1 = 0x606c4a02ea734cc32acd2b02bc28b99cb3e287e85a763af267492ab572e99ab3f370d275cec1da1aaa9075ff05f79be
G2 = E2(G2x0 + u*G2x1, G2y0 + u*G2y1)
class Pairing():
def lift_E1_to_E12(self, P):
"""
Lift point on E/F_q to E/F_{q^12} using the natural lift
"""
assert P.curve() == E1, "Attempting to lift a point from the wrong curve."
return E12(P)
def lift_E2_to_E12(self, P):
"""
Lift point on E/F_{q^2} to E/F_{q_12} through the sextic twist
"""
assert P.curve() == E2, "Attempting to lift a point from the wrong curve."
xs, ys = [c.polynomial().coefficients() for c in (h2*P).xy()]
nx = F12(xs[0] - xs[1] + w ^ 6*xs[1])
ny = F12(ys[0] - ys[1] + w ^ 6*ys[1])
return E12(nx / (w ^ 2), ny / (w ^ 3))
def pair(self, A, B):
A = self.lift_E1_to_E12(A)
B = self.lift_E2_to_E12(B)
return A.ate_pairing(B, r, 12, E12.trace_of_frobenius())

Loading…
Cancel
Save