diff --git a/commutative-algebra-notes.pdf b/commutative-algebra-notes.pdf index 9af0ba3..36759e4 100644 Binary files a/commutative-algebra-notes.pdf and b/commutative-algebra-notes.pdf differ diff --git a/commutative-algebra-notes.tex b/commutative-algebra-notes.tex index 4fd9100..5c88d5c 100644 --- a/commutative-algebra-notes.tex +++ b/commutative-algebra-notes.tex @@ -92,7 +92,91 @@ \section{Ideals} \subsection{Definitions} -% WIP + +\begin{defn}{ideal} + $I \subset R$ ($R$ ring) such that $0 \in I$ and $\forall x \in I,~ r \in R,~ xr, rx \in I$.\\ + \hspace*{2em} ie. $I$ absorbs products in $R$. +\end{defn} + +\begin{defn}{prime ideal} + if $a, b \in R$ with $ab \in P$ and $P \neq R$ ($P$ a prime ideal), implies $a in P$ or $b \in P$. +\end{defn} + +\begin{defn}{principal ideal} + generated by a single element, $(a)$. + + $(a)$: principal ideal, the set of all multiples $xa$ with $x \in R$. +\end{defn} + +\begin{defn}{maximal ideal} + $\mM \subset A$ ($A$ ring) with $m \neq A$ and there is no ideal $I$ strictly between $\mM$ and $A$. ie. if $\mM$ maximal and $\mM \subseteq I \subseteq A$, either $\mM=I$ or $I=A$. +\end{defn} + + +\begin{defn}{unit} + $x \in A$ such that $xy=1$ for some $y \in A$. ie. element \emph{which divides 1}. +\end{defn} + +\begin{defn}{zerodivisor} + $x \in A$ such that $\exists 0 \neq y \in A$ such that $xy=0 \in A$. ie. $x$ \emph{divides 0}.. + + + If a ring does not have zerodivisors is an integral domain. +\end{defn} + +\begin{defn}{prime spectrum - $Spec(A)$} + set of prime ideals of $A$. ie. + + $$Spec(A) = \{ P ~|~ P \subset A~ \text{is a prime ideal} \}$$ +\end{defn} + +\begin{defn}{integral domain} + Ring in which the product of any two nonzero elements is nonzero. + + ie. no zerodivisors. + + ie. $\forall~ 0 \neq a,~ 0 \neq b \in A,~ ab \neq 0 \in A$. + + Every field is an integral domain, not the converse. +\end{defn} + +\begin{defn}{principal ideal domain - PID} + integral domain in which every ideal is principal. ie. + ie. $\forall I \subset R,~ \exists~ a \in I$ such that $I = (a) = \{ ra ~|~ r \in R \}$. +\end{defn} + +\begin{defn}{nilpotent} + $a \in A$ such that $a^n=0$ for some $n>0$. +\end{defn} +\begin{defn}{nilrad A} + set of all nilpotent elements of $A$; is an ideal of $A$. + + if $nilrad A = 0 ~\Longrightarrow$ $A$ has no nonzero nilpotents. + + + $$nilrad A = \bigcap_{P \in Spec(A)} P$$ +\end{defn} + +\begin{defn}{idempotent} + $e \in A$ such that $e^2=e$. +\end{defn} + +\begin{defn}{radical of an ideal} + $$rad I = \{ f \in A | f^n \in I~ \text{for some} n \}$$ + + $rad I$ is an ideal. + + $nilrad A = rad 0$ + + $rad I = \bigcap_{\substack{P \in \operatorname{Spec}(A)\\ P \supset I}} P$ +\end{defn} + +\begin{defn}{local ring} + A \emph{local ring} has a unique maximal ideal. + + Notation: locall ring $A$, its maximal ideal $\mM$, residue field $K=A/\mM$: + $$A \supset \mM ~\text{or}~ (A, \mM) ~\text{or}~ (A, \mM, K)$$ +\end{defn} \subsection{Lemmas, propositions and corollaries} \begin{thm}{AM.1.X}{Zorn's lemma} \label{zorn} @@ -339,6 +423,7 @@ $A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi \begin{proof} By \ref{2.5}: since $\aA M = M$, we have $x M =0$ for some $x \equiv 1 \pmod {Jac(A)}$. (notice that at \ref{2.5} is $\pmod \aA$ but here we use $\pmod {Jac(A)}$, since we have $\aA \subseteq Jac(A)$). + (recall \ref{1.9}: $x \in Jac(A)$ iff $(1 - xy)$ is a unit in $A$, $\forall y \in A$).\\ By \ref{1.9}, $x$ is a unit in $A$ (thus $x^{-1}\cdot x=1$). Hence $M = x^{-1} \cdot \underbrace{x~ \cdot M}_{=0~ \text{(by \ref{2.5})}} = 0$. @@ -381,7 +466,7 @@ $A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi $$\frac{\aA M + N}{N} = \left\{ y + N ~~|~~ y \in \aA M +N \right\} = \aA M + N$$ thus every $y \in \aA M +N$ can be written as - $$y=x+n,~~ \text{with} x \in \aA M,~ n\in M$$ + $$y=x+n,~~ \text{with} x \in \aA M,~ n\in N$$ which comes from \eqref{eq:2.7.1}. Thus, $y + N = (x+n)+N = x+N$, since $n \in N$ is zero in the quotient. @@ -500,9 +585,8 @@ As in with rings, it is equivalent to say that \end{proof} \begin{lemma}{R.3.4.L} - for submodules $M_1 \subset M_2 \subset M$,\\ - - $L \cap M_1 = L \cap M_2$ and $\beta(M_1) = \beta(M_2) ~\Longrightarrow~ M_1 = M_2$. + for submodules $M_1 \subset M_2 \subset M$, + $$L \cap M_1 = L \cap M_2 ~\text{and}~ \beta(M_1) = \beta(M_2) ~\Longrightarrow~ M_1 = M_2$$ \end{lemma} \begin{proof} if $m\in M_2$, then $\beta(m) \in \beta(M_1) = \beta(M_2)$, so that there is an $n \in M_1$ such that $\beta(m)=\beta(m)$.