Browse Source

Sage impls single-files code&tests

master
arnaucube 2 years ago
parent
commit
3a0aca0f8c
10 changed files with 454 additions and 455 deletions
  1. +81
    -0
      fft.sage
  2. +0
    -79
      fft_test.sage
  3. +158
    -0
      ipa.sage
  4. +0
    -161
      ipa_test.sage
  5. +29
    -0
      number-theory.sage
  6. +0
    -28
      number-theory_test.sage
  7. +55
    -0
      ring-signatures.sage
  8. +0
    -56
      ring-signatures_test.sage
  9. +131
    -0
      sigma.sage
  10. +0
    -131
      sigma_test.sage

+ 81
- 0
fft.sage

@ -60,3 +60,84 @@ def poly_mul(fa, fb, F, n):
fc_coef = c_evals*ft_inv
fc2=P(fc_coef.list())
return fc2, c_evals
# Tests
#####
# Roots of Unity test:
q = 17
F = GF(q)
n = 4
g, primitive_w = get_primitive_root_of_unity(F, n)
print("generator:", g)
print("primitive_w:", primitive_w)
w = get_nth_roots_of_unity(n, primitive_w)
print(f"{n}th roots of unity: {w}")
assert w == [1, 13, 16, 4]
#####
# FFT test:
def isprime(num):
for n in range(2,int(num^1/2)+1):
if num%n==0:
return False
return True
# list valid values for q
for i in range(20):
if isprime(8*i+1):
print("q =", 8*i+1)
q = 41
F = GF(q)
n = 4
# q needs to be a prime, s.t. q-1 is divisible by n
assert (q-1)%n==0
print("q =", q, "n = ", n)
# ft: Vandermonde matrix for the nth roots of unity
w, ft, ft_inv = fft(F, n)
print("nth roots of unity:", w)
print("Vandermonde matrix:")
print(ft)
a = vector([3,4,5,9])
print("a:", a)
# interpolate f_a(x)
fa_coef = ft_inv * a
print("fa_coef:", fa_coef)
P.<x> = PolynomialRing(F)
fa = P(list(fa_coef))
print("f_a(x):", fa)
# check that evaluating fa(x) at the roots of unity returns the expected values of a
for i in range(len(a)):
assert fa(w[i]) == a[i]
# Fast polynomial multiplicaton using FFT
print("\n---------")
print("---Fast polynomial multiplication using FFT")
n = 8
# q needs to be a prime, s.t. q-1 is divisible by n
assert (q-1)%n==0
print("q =", q, "n = ", n)
fa=P([1,2,3,4])
fb=P([1,2,3,4])
fc_expected = fa*fb
print("fc expected result:", fc_expected) # expected result
print("fc expected coef", fc_expected.coefficients())
fc, c_evals = poly_mul(fa, fb, F, n)
print("c_evals=(a_evals*b_evals)=", c_evals)
print("fc:", fc)
assert fc_expected == fc

+ 0
- 79
fft_test.sage

@ -1,79 +0,0 @@
load("fft.sage")
#####
# Roots of Unity test:
q = 17
F = GF(q)
n = 4
g, primitive_w = get_primitive_root_of_unity(F, n)
print("generator:", g)
print("primitive_w:", primitive_w)
w = get_nth_roots_of_unity(n, primitive_w)
print(f"{n}th roots of unity: {w}")
assert w == [1, 13, 16, 4]
#####
# FFT test:
def isprime(num):
for n in range(2,int(num^1/2)+1):
if num%n==0:
return False
return True
# list valid values for q
for i in range(20):
if isprime(8*i+1):
print("q =", 8*i+1)
q = 41
F = GF(q)
n = 4
# q needs to be a prime, s.t. q-1 is divisible by n
assert (q-1)%n==0
print("q =", q, "n = ", n)
# ft: Vandermonde matrix for the nth roots of unity
w, ft, ft_inv = fft(F, n)
print("nth roots of unity:", w)
print("Vandermonde matrix:")
print(ft)
a = vector([3,4,5,9])
print("a:", a)
# interpolate f_a(x)
fa_coef = ft_inv * a
print("fa_coef:", fa_coef)
P.<x> = PolynomialRing(F)
fa = P(list(fa_coef))
print("f_a(x):", fa)
# check that evaluating fa(x) at the roots of unity returns the expected values of a
for i in range(len(a)):
assert fa(w[i]) == a[i]
# Fast polynomial multiplicaton using FFT
print("\n---------")
print("---Fast polynomial multiplication using FFT")
n = 8
# q needs to be a prime, s.t. q-1 is divisible by n
assert (q-1)%n==0
print("q =", q, "n = ", n)
fa=P([1,2,3,4])
fb=P([1,2,3,4])
fc_expected = fa*fb
print("fc expected result:", fc_expected) # expected result
print("fc expected coef", fc_expected.coefficients())
fc, c_evals = poly_mul(fa, fb, F, n)
print("c_evals=(a_evals*b_evals)=", c_evals)
print("fc:", fc)
assert fc_expected == fc

+ 158
- 0
ipa.sage

@ -303,3 +303,161 @@ def vec_scalar_mul_point(a, n):
return r
# Tests
import unittest, operator
# Ethereum elliptic curve
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
a = 0
b = 7
Fp = GF(p)
E = EllipticCurve(Fp, [a,b])
GX = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
GY = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8
g = E(GX,GY)
n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
h = 1
q = g.order()
Fq = GF(q)
# simplier curve values
# p = 19
# Fp = GF(p)
# E = EllipticCurve(Fp,[0,3])
# g = E(1, 2)
# q = g.order()
# Fq = GF(q)
print(E)
print(Fq)
assert is_prime(p)
assert is_prime(q)
assert g * q == 0
class TestUtils(unittest.TestCase):
def test_vecs(self):
a = [1, 2, 3, 4, 5]
b = [1, 2, 3, 4, 5]
c = vec_scalar_mul_field(a, 10)
assert c == [10, 20, 30, 40, 50]
c = inner_product_field(a, b)
assert c == 55
# check that <a, b> with b = (1, x, x^2, ..., x^{d-1}) is the same
# than evaluating p(x) with coefficients a_i, at x
a = [Fq(1), Fq(2), Fq(3), Fq(4), Fq(5), Fq(6), Fq(7), Fq(8)]
z = Fq(3)
b = powers_of(z, 8)
c = inner_product_field(a, b)
x = PolynomialRing(Fq, 'x').gen()
px = 1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7
assert c == px(x=z)
class TestIPA_bulletproofs(unittest.TestCase):
def test_inner_product(self):
d = 8
ipa = IPA_bulletproofs(Fq, E, g, d)
# prover
# p(x) = 1 + 2x + 3x² + 4x³ + 5x⁴ + 6x⁵ + 7x⁶ + 8x⁷
a = [ipa.F(1), ipa.F(2), ipa.F(3), ipa.F(4), ipa.F(5), ipa.F(6), ipa.F(7), ipa.F(8)]
x = ipa.F(3)
b = powers_of(x, ipa.d) # = b
# prover
P = ipa.commit(a, b)
print("commit", P)
v = ipa.evaluate(a, b)
print("v", v)
# verifier
# r = int(ipa.F.random_element())
# verifier generate random challenges {uᵢ} ∈ 𝕀 and U ∈ 𝔾
U = ipa.E.random_element()
k = int(math.log(d, 2))
u = [None] * k
for j in reversed(range(0, k)):
u[j] = ipa.F.random_element()
while (u[j] == 0): # prevent u[j] from being 0
u[j] = ipa.F.random_element()
P = P + int(inner_product_field(a, b)) * U
# prover
a_ipa, b_ipa, G_ipa, H_ipa, L, R = ipa.ipa(a, b, u, U)
# verifier
print("P", P)
print("a_ipa", a_ipa)
verif = ipa.verify(P, a_ipa, v, b, u, U, L, R, b_ipa, G_ipa, H_ipa)
print("Verification:", verif)
assert verif == True
class TestIPA_halo(unittest.TestCase):
def test_homomorphic_property(self):
ipa = IPA_halo(Fq, E, g, 5)
a = [1, 2, 3, 4, 5]
b = [1, 2, 3, 4, 5]
c = vec_add(a, b)
assert c == [2,4,6,8,10]
r = int(ipa.F.random_element())
s = int(ipa.F.random_element())
vc_a = ipa.commit(a, r)
vc_b = ipa.commit(b, s)
# com(a, r) + com(b, s) == com(a+b, r+s)
expected_vc_c = ipa.commit(vec_add(a, b), r+s)
vc_c = vc_a + vc_b
assert vc_c == expected_vc_c
def test_inner_product(self):
d = 8
ipa = IPA_halo(Fq, E, g, d)
# prover
# p(x) = 1 + 2x + 3x² + 4x³ + 5x⁴ + 6x⁵ + 7x⁶ + 8x⁷
a = [ipa.F(1), ipa.F(2), ipa.F(3), ipa.F(4), ipa.F(5), ipa.F(6), ipa.F(7), ipa.F(8)]
x = ipa.F(3)
x_powers = powers_of(x, ipa.d) # = b
# verifier
r = int(ipa.F.random_element())
# prover
P = ipa.commit(a, r)
print("commit", P)
v = ipa.evaluate(a, x_powers)
print("v", v)
# verifier generate random challenges {uᵢ} ∈ 𝕀 and U ∈ 𝔾
U = ipa.E.random_element()
k = int(math.log(ipa.d, 2))
u = [None] * k
for j in reversed(range(0, k)):
u[j] = ipa.F.random_element()
while (u[j] == 0): # prevent u[j] from being 0
u[j] = ipa.F.random_element()
P = P + int(v) * U
# prover
a_ipa, b_ipa, G_ipa, lj, rj, L, R = ipa.ipa(a, x_powers, u, U)
# verifier
print("P", P)
print("a_ipa", a_ipa)
print("\n Verify:")
verif = ipa.verify(P, a_ipa, v, x_powers, r, u, U, lj, rj, L, R)
assert verif == True
if __name__ == '__main__':
unittest.main()

+ 0
- 161
ipa_test.sage

@ -1,161 +0,0 @@
import unittest, operator
load("ipa.sage")
# Halo paper: https://eprint.iacr.org/2019/1021.pdf
# Bulletproofs paper: https://eprint.iacr.org/2017/1066.pdf
# Ethereum elliptic curve
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
a = 0
b = 7
Fp = GF(p)
E = EllipticCurve(Fp, [a,b])
GX = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
GY = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8
g = E(GX,GY)
n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
h = 1
q = g.order()
Fq = GF(q)
# simplier curve values
# p = 19
# Fp = GF(p)
# E = EllipticCurve(Fp,[0,3])
# g = E(1, 2)
# q = g.order()
# Fq = GF(q)
print(E)
print(Fq)
assert is_prime(p)
assert is_prime(q)
assert g * q == 0
class TestUtils(unittest.TestCase):
def test_vecs(self):
a = [1, 2, 3, 4, 5]
b = [1, 2, 3, 4, 5]
c = vec_scalar_mul_field(a, 10)
assert c == [10, 20, 30, 40, 50]
c = inner_product_field(a, b)
assert c == 55
# check that <a, b> with b = (1, x, x^2, ..., x^{d-1}) is the same
# than evaluating p(x) with coefficients a_i, at x
a = [Fq(1), Fq(2), Fq(3), Fq(4), Fq(5), Fq(6), Fq(7), Fq(8)]
z = Fq(3)
b = powers_of(z, 8)
c = inner_product_field(a, b)
x = PolynomialRing(Fq, 'x').gen()
px = 1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7
assert c == px(x=z)
class TestIPA_bulletproofs(unittest.TestCase):
def test_inner_product(self):
d = 8
ipa = IPA_bulletproofs(Fq, E, g, d)
# prover
# p(x) = 1 + 2x + 3x² + 4x³ + 5x⁴ + 6x⁵ + 7x⁶ + 8x⁷
a = [ipa.F(1), ipa.F(2), ipa.F(3), ipa.F(4), ipa.F(5), ipa.F(6), ipa.F(7), ipa.F(8)]
x = ipa.F(3)
b = powers_of(x, ipa.d) # = b
# prover
P = ipa.commit(a, b)
print("commit", P)
v = ipa.evaluate(a, b)
print("v", v)
# verifier
# r = int(ipa.F.random_element())
# verifier generate random challenges {uᵢ} ∈ 𝕀 and U ∈ 𝔾
U = ipa.E.random_element()
k = int(math.log(d, 2))
u = [None] * k
for j in reversed(range(0, k)):
u[j] = ipa.F.random_element()
while (u[j] == 0): # prevent u[j] from being 0
u[j] = ipa.F.random_element()
P = P + int(inner_product_field(a, b)) * U
# prover
a_ipa, b_ipa, G_ipa, H_ipa, L, R = ipa.ipa(a, b, u, U)
# verifier
print("P", P)
print("a_ipa", a_ipa)
verif = ipa.verify(P, a_ipa, v, b, u, U, L, R, b_ipa, G_ipa, H_ipa)
print("Verification:", verif)
assert verif == True
class TestIPA_halo(unittest.TestCase):
def test_homomorphic_property(self):
ipa = IPA_halo(Fq, E, g, 5)
a = [1, 2, 3, 4, 5]
b = [1, 2, 3, 4, 5]
c = vec_add(a, b)
assert c == [2,4,6,8,10]
r = int(ipa.F.random_element())
s = int(ipa.F.random_element())
vc_a = ipa.commit(a, r)
vc_b = ipa.commit(b, s)
# com(a, r) + com(b, s) == com(a+b, r+s)
expected_vc_c = ipa.commit(vec_add(a, b), r+s)
vc_c = vc_a + vc_b
assert vc_c == expected_vc_c
def test_inner_product(self):
d = 8
ipa = IPA_halo(Fq, E, g, d)
# prover
# p(x) = 1 + 2x + 3x² + 4x³ + 5x⁴ + 6x⁵ + 7x⁶ + 8x⁷
a = [ipa.F(1), ipa.F(2), ipa.F(3), ipa.F(4), ipa.F(5), ipa.F(6), ipa.F(7), ipa.F(8)]
x = ipa.F(3)
x_powers = powers_of(x, ipa.d) # = b
# verifier
r = int(ipa.F.random_element())
# prover
P = ipa.commit(a, r)
print("commit", P)
v = ipa.evaluate(a, x_powers)
print("v", v)
# verifier generate random challenges {uᵢ} ∈ 𝕀 and U ∈ 𝔾
U = ipa.E.random_element()
k = int(math.log(ipa.d, 2))
u = [None] * k
for j in reversed(range(0, k)):
u[j] = ipa.F.random_element()
while (u[j] == 0): # prevent u[j] from being 0
u[j] = ipa.F.random_element()
P = P + int(v) * U
# prover
a_ipa, b_ipa, G_ipa, lj, rj, L, R = ipa.ipa(a, x_powers, u, U)
# verifier
print("P", P)
print("a_ipa", a_ipa)
print("\n Verify:")
verif = ipa.verify(P, a_ipa, v, x_powers, r, u, U, lj, rj, L, R)
assert verif == True
if __name__ == '__main__':
unittest.main()

+ 29
- 0
number-theory.sage

@ -77,3 +77,32 @@ def inv_mod(a, N):
if g != 1:
raise Exception("inv_mod err, g!=1")
return mod(x, N)
# Tests
#####
# Chinese Remainder Theorem tests
a_i = [5, 3, 10]
m_i = [7, 11, 13]
assert crt(a_i, m_i) == 894
a_i = [3, 8]
m_i = [13, 17]
assert crt(a_i, m_i) == 42
#####
# gcd, using Binary Euclidean algorithm tests
assert gcd(21, 12) == 3
assert gcd(1_426_668_559_730, 810_653_094_756) == 1_417_082
assert gcd_recursive(21, 12) == 3
#####
# Extended Euclidean algorithm tests
assert egcd(7, 19) == (1, -8, 3)
assert egcd_recursive(7, 19) == (1, -8, 3)
#####
# Inverse modulo N tests
assert inv_mod(7, 19) == 11

+ 0
- 28
number-theory_test.sage

@ -1,28 +0,0 @@
load("number-theory.sage")
#####
# Chinese Remainder Theorem tests
a_i = [5, 3, 10]
m_i = [7, 11, 13]
assert crt(a_i, m_i) == 894
a_i = [3, 8]
m_i = [13, 17]
assert crt(a_i, m_i) == 42
#####
# gcd, using Binary Euclidean algorithm tests
assert gcd(21, 12) == 3
assert gcd(1_426_668_559_730, 810_653_094_756) == 1_417_082
assert gcd_recursive(21, 12) == 3
#####
# Extended Euclidean algorithm tests
assert egcd(7, 19) == (1, -8, 3)
assert egcd_recursive(7, 19) == (1, -8, 3)
#####
# Inverse modulo N tests
assert inv_mod(7, 19) == 11

+ 55
- 0
ring-signatures.sage

@ -2,6 +2,7 @@ from hashlib import sha256
# Ring Signatures
# bLSAG: Back’s Linkable Spontaneous Anonymous Group signatures
#
# A Rust implementation of this scheme can be found at:
# https://github.com/arnaucube/ring-signatures-rs
@ -93,3 +94,57 @@ def verify(g, R, m, key_image, sig):
print_ring(c)
assert c1 == c[0]
# Tests
import unittest, operator
# ethereum elliptic curve
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
a = 0
b = 7
F = GF(p)
E = EllipticCurve(F, [a,b])
GX = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
GY = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8
g = E(GX,GY)
n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
h = 1
q = g.order()
assert is_prime(p)
assert is_prime(q)
assert g * q == 0
class TestRingSignatures(unittest.TestCase):
def test_bLSAG_ring_of_5(self):
test_bLSAG(5, 3)
def test_bLSAG_ring_of_20(self):
test_bLSAG(20, 14)
def test_bLSAG(ring_size, pi):
print(f"[bLSAG] Testing with a ring of {ring_size} keys")
prover = Prover(F, g)
n = ring_size
R = [None] * n
# generate prover's key pair
K_pi = prover.new_key()
# generate other n public keys
for i in range(0, n):
R[i] = g * i
# set K_pi
R[pi] = K_pi
# sign m
m = 1234
print("sign")
sig = prover.sign(m, R)
print("verify")
key_image = prover.w * hashToPoint(prover.K)
verify(g, R, m, key_image, sig)
if __name__ == '__main__':
unittest.main()

+ 0
- 56
ring-signatures_test.sage

@ -1,56 +0,0 @@
import unittest, operator
load("ring-signatures.sage")
# A Rust implementation of this scheme can be found at:
# https://github.com/arnaucube/ring-signatures-rs
# ethereum elliptic curve
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
a = 0
b = 7
F = GF(p)
E = EllipticCurve(F, [a,b])
GX = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
GY = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8
g = E(GX,GY)
n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
h = 1
q = g.order()
assert is_prime(p)
assert is_prime(q)
assert g * q == 0
class TestRingSignatures(unittest.TestCase):
def test_bLSAG_ring_of_5(self):
test_bLSAG(5, 3)
def test_bLSAG_ring_of_20(self):
test_bLSAG(20, 14)
def test_bLSAG(ring_size, pi):
print(f"[bLSAG] Testing with a ring of {ring_size} keys")
prover = Prover(F, g)
n = ring_size
R = [None] * n
# generate prover's key pair
K_pi = prover.new_key()
# generate other n public keys
for i in range(0, n):
R[i] = g * i
# set K_pi
R[pi] = K_pi
# sign m
m = 1234
print("sign")
sig = prover.sign(m, R)
print("verify")
key_image = prover.w * hashToPoint(prover.K)
verify(g, R, m, key_image, sig)
if __name__ == '__main__':
unittest.main()

+ 131
- 0
sigma.sage

@ -211,3 +211,134 @@ class ORVerifier:
# check g*z == X*c + A (in multiplicative notation would g^z ==X^c * A)
for i in range(len(Xs)):
assert self.g * int(zs[i]) == Xs[i] * int(cs[i]) + self.As[i]
# Tests
import unittest, operator
# ethereum elliptic curve
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
a = 0
b = 7
F = GF(p)
E = EllipticCurve(F, [a,b])
GX = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
GY = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8
g = E(GX,GY)
n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
h = 1
q = g.order()
assert is_prime(p)
assert is_prime(q)
class TestSigmaProtocol(unittest.TestCase):
def test_interactive(self):
alice = Prover_interactive(F, g)
# Alice generates witness w & statement X
X = alice.new_key()
assert X == alice.g * int(alice.w)
# Alice generates the commitment A
A = alice.new_commitment()
assert A == alice.g * int(alice.a)
# Bob generates the challenge (and stores A)
bob = Verifier_interactive(F, g)
c = bob.new_challenge(A)
# Alice generates the proof
z = alice.gen_proof(c)
# Bob verifies the proof
assert bob.verify(X, z)
# check with the generic_verify function
assert generic_verify(g, X, A, c, z)
def test_non_interactive(self):
alice = Prover(F, g)
# Alice generates witness w & statement X
X = alice.new_key()
assert X == alice.g * int(alice.w)
# Alice generates the proof
A, z = alice.gen_proof(X)
# Bob generates the challenge
bob = Verifier(F, g)
# Bob verifies the proof
assert bob.verify(X, A, z)
# check with the generic_verify function
c = hash_two_points(A, X)
assert generic_verify(g, X, A, c, z)
def test_simulator(self):
sim = Simulator(F, g)
# set a public key X, for which we don't know w
unknown_w = 3
X = g * unknown_w
# simulate for X
A, c, z = sim.simulate(X)
# verify the simulated proof
assert generic_verify(g, X, A, c, z)
class TestORProof(unittest.TestCase):
def test_2_parties(self):
# set a public key X, for which we don't know w
unknown_w = 3
X_1 = g * unknown_w
alice = ORProver_2parties(F, g)
# Alice generates key pair
X = alice.new_key()
Xs = [X, X_1]
# Alice generates commitments (internally running the simulator)
As = alice.gen_commitments(Xs)
# Bob generates the challenge (and stores As)
bob = ORVerifier_2parties(F, g)
s = bob.new_challenge(As)
# Alice generates the ORproof
cs, zs = alice.gen_proof(s)
# Bob verifies the proofs
bob.verify(Xs, cs, zs)
def test_n_parties(self):
# set n public keys X, for which we don't know w
Xs = []
for i in range(10):
X_i = g * i
Xs.append(X_i)
alice = ORProver(F, g)
# Alice generates key pair
X = alice.new_key()
Xs.insert(0, X) # add X at the begining of Xs array
# Alice generates commitments (internally running the simulator)
As = alice.gen_commitments(Xs)
# Bob generates the challenge (and stores As)
bob = ORVerifier(F, g)
s = bob.new_challenge(As)
# Alice generates the ORproof
cs, zs = alice.gen_proof(s)
# Bob verifies the proofs
bob.verify(Xs, cs, zs)
if __name__ == '__main__':
unittest.main()

+ 0
- 131
sigma_test.sage

@ -1,131 +0,0 @@
import unittest, operator
load("sigma.sage")
# Tests for Sigma protocol & OR proofs
# ethereum elliptic curve
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
a = 0
b = 7
F = GF(p)
E = EllipticCurve(F, [a,b])
GX = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
GY = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8
g = E(GX,GY)
n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
h = 1
q = g.order()
assert is_prime(p)
assert is_prime(q)
class TestSigmaProtocol(unittest.TestCase):
def test_interactive(self):
alice = Prover_interactive(F, g)
# Alice generates witness w & statement X
X = alice.new_key()
assert X == alice.g * int(alice.w)
# Alice generates the commitment A
A = alice.new_commitment()
assert A == alice.g * int(alice.a)
# Bob generates the challenge (and stores A)
bob = Verifier_interactive(F, g)
c = bob.new_challenge(A)
# Alice generates the proof
z = alice.gen_proof(c)
# Bob verifies the proof
assert bob.verify(X, z)
# check with the generic_verify function
assert generic_verify(g, X, A, c, z)
def test_non_interactive(self):
alice = Prover(F, g)
# Alice generates witness w & statement X
X = alice.new_key()
assert X == alice.g * int(alice.w)
# Alice generates the proof
A, z = alice.gen_proof(X)
# Bob generates the challenge
bob = Verifier(F, g)
# Bob verifies the proof
assert bob.verify(X, A, z)
# check with the generic_verify function
c = hash_two_points(A, X)
assert generic_verify(g, X, A, c, z)
def test_simulator(self):
sim = Simulator(F, g)
# set a public key X, for which we don't know w
unknown_w = 3
X = g * unknown_w
# simulate for X
A, c, z = sim.simulate(X)
# verify the simulated proof
assert generic_verify(g, X, A, c, z)
class TestORProof(unittest.TestCase):
def test_2_parties(self):
# set a public key X, for which we don't know w
unknown_w = 3
X_1 = g * unknown_w
alice = ORProver_2parties(F, g)
# Alice generates key pair
X = alice.new_key()
Xs = [X, X_1]
# Alice generates commitments (internally running the simulator)
As = alice.gen_commitments(Xs)
# Bob generates the challenge (and stores As)
bob = ORVerifier_2parties(F, g)
s = bob.new_challenge(As)
# Alice generates the ORproof
cs, zs = alice.gen_proof(s)
# Bob verifies the proofs
bob.verify(Xs, cs, zs)
def test_n_parties(self):
# set n public keys X, for which we don't know w
Xs = []
for i in range(10):
X_i = g * i
Xs.append(X_i)
alice = ORProver(F, g)
# Alice generates key pair
X = alice.new_key()
Xs.insert(0, X) # add X at the begining of Xs array
# Alice generates commitments (internally running the simulator)
As = alice.gen_commitments(Xs)
# Bob generates the challenge (and stores As)
bob = ORVerifier(F, g)
s = bob.new_challenge(As)
# Alice generates the ORproof
cs, zs = alice.gen_proof(s)
# Bob verifies the proofs
bob.verify(Xs, cs, zs)
if __name__ == '__main__':
unittest.main()

Loading…
Cancel
Save