mirror of
https://github.com/arnaucube/math.git
synced 2026-01-10 16:01:31 +01:00
hypernova: add multifolding diagram
also add some more notes to spartan
This commit is contained in:
Binary file not shown.
@@ -7,11 +7,38 @@
|
||||
\usepackage{enumerate}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{xcolor}
|
||||
\usepackage{pgf-umlsd} % diagrams
|
||||
\usepackage{centernot}
|
||||
\usepackage{algorithm}
|
||||
\usepackage{algpseudocode}
|
||||
|
||||
\usepackage{pgf-umlsd} % diagrams
|
||||
|
||||
% message between threads. From https://tex.stackexchange.com/a/174765
|
||||
% Example:
|
||||
% \bloodymess[delay]{sender}{message content}{receiver}{DIR}{start note}{end note}
|
||||
\newcommand{\bloodymess}[7][0]{
|
||||
\stepcounter{seqlevel}
|
||||
\path
|
||||
(#2)+(0,-\theseqlevel*\unitfactor-0.7*\unitfactor) node (mess from) {};
|
||||
\addtocounter{seqlevel}{#1}
|
||||
\path
|
||||
(#4)+(0,-\theseqlevel*\unitfactor-0.7*\unitfactor) node (mess to) {};
|
||||
\draw[->,>=angle 60] (mess from) -- (mess to) node[midway, above]
|
||||
{#3};
|
||||
|
||||
\if R#5
|
||||
\node (\detokenize{#3} from) at (mess from) {\llap{#6~}};
|
||||
\node (\detokenize{#3} to) at (mess to) {\rlap{~#7}};
|
||||
\else\if L#5
|
||||
\node (\detokenize{#3} from) at (mess from) {\rlap{~#6}};
|
||||
\node (\detokenize{#3} to) at (mess to) {\llap{#7~}};
|
||||
\else
|
||||
\node (\detokenize{#3} from) at (mess from) {#6};
|
||||
\node (\detokenize{#3} to) at (mess to) {#7};
|
||||
\fi
|
||||
\fi
|
||||
}
|
||||
|
||||
|
||||
% prevent warnings of underfull \hbox:
|
||||
\usepackage{etoolbox}
|
||||
@@ -147,6 +174,30 @@ Let $s= \log m,~ s'= \log n$.
|
||||
\item $P$: output folded witness: $\widetilde{w}' \leftarrow \widetilde{w}_1 + \rho \cdot \widetilde{w}_2$.
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\vspace{1cm}
|
||||
Multifolding flow:
|
||||
\begin{center}
|
||||
\begin{sequencediagram}
|
||||
\newinst[1]{p}{Prover}
|
||||
\newinst[3]{v}{Verifier}
|
||||
|
||||
\bloodymess[1]{v}{$\gamma,~\beta,~r_x'$}{p}{L}{
|
||||
\shortstack{
|
||||
$\gamma \in \mathbb{F},~ \beta \in \mathbb{F}^s$\\
|
||||
$r_x' \in \mathbb{F}^s$
|
||||
}
|
||||
}{}
|
||||
\bloodymess[1]{p}{$c,~ \pi_{SC}$}{v}{R}{sum-check prove}{sum-check verify}
|
||||
\bloodymess[1]{p}{$\{\sigma_j\},~\{\theta_j\}$}{v}{R}{compute $\{\sigma_j\}, \{\theta_j\}~ \forall j \in [t]$}{verify $c$ with $\{\sigma_j\}, \{\theta_j\}$ relation}
|
||||
\bloodymess[1]{v}{$\rho$}{p}{L}{$\rho \in^R \mathbb{F}$}{}
|
||||
\callself[0]{p}{fold LCCCS instance}{p}
|
||||
\prelevel
|
||||
\callself[0]{v}{fold LCCCS instance}{v}
|
||||
\callself[0]{p}{fold $\widetilde{w}$}{p}
|
||||
\end{sequencediagram}
|
||||
\end{center}
|
||||
|
||||
\vspace{1cm}
|
||||
|
||||
Now, to see the verifier check from step 5, observe that in LCCCS, since $\widetilde{w}$ satisfies,
|
||||
@@ -178,7 +229,7 @@ Then we can see that
|
||||
\begin{align*}
|
||||
c &= g(r_x')\\
|
||||
&= \left( \sum_{j \in [t]} \gamma^j \cdot L_j(r_x') \right) + \gamma^{t+1} \cdot Q(r_x')\\
|
||||
&= \left( \sum_{j \in [t]} \gamma^j \cdot e_q \cdot \sigma_j \right) + \gamma^{t+1} \cdot e_2 \cdot \sum_{i \in [q]} c_i \prod_{j \in S_i} \theta_j
|
||||
&= \left( \sum_{j \in [t]} \gamma^j \cdot \overbrace{e_1 \cdot \sigma_j}^{L_j(r_x')} \right) + \gamma^{t+1} \cdot \overbrace{e_2 \cdot \sum_{i \in [q]} c_i \prod_{j \in S_i} \theta_j}^{Q(x)}
|
||||
\end{align*}
|
||||
|
||||
where $e_1 = \widetilde{eq}(r_x, r_x')$ and $e_2=\widetilde{eq}(\beta, r_x')$.
|
||||
@@ -229,7 +280,7 @@ This logic can be defined as follows:
|
||||
\begin{algorithm}[H]
|
||||
\caption{Generating a Sparse Multilinear Polynomial from a matrix}
|
||||
\begin{algorithmic}
|
||||
\State set empty vector $v \in (\text{index:}~ \mathbb{Z}, x: \mathbb{F})^{s \times s'}$
|
||||
\State set empty vector $v \in (\text{index:}~ \mathbb{Z}, x: \mathbb{F}^{s \times s'})$
|
||||
\For {$i$ to $m$}
|
||||
\For {$j$ to $n$}
|
||||
\If {$M_{i,j} \neq 0$}
|
||||
|
||||
BIN
notes_nova.pdf
BIN
notes_nova.pdf
Binary file not shown.
@@ -170,7 +170,7 @@ Let $Z_1 = (W_1, x_1, u_1)$ and $Z_2 = (W_2, x_2, u_2)$.
|
||||
\end{align*}
|
||||
\end{enumerate}
|
||||
|
||||
P will proof that knows the valid witness $(E, r_E, W, r_W)$ for the committed relaxed R1CS without revealing its value.
|
||||
P will prove that knows the valid witness $(E, r_E, W, r_W)$ for the committed relaxed R1CS without revealing its value.
|
||||
|
||||
\begin{center}
|
||||
\begin{sequencediagram}
|
||||
|
||||
Binary file not shown.
@@ -89,24 +89,33 @@ $$
|
||||
|
||||
\vspace{0.5cm}
|
||||
|
||||
$\widetilde{F}_{io}(\cdot)$: low-degree multivariate polynomial over $\mathbb{F}$ in $s$ variables.
|
||||
Verifier can check if $\sum_{x \in \{0,1\}^s} \widetilde{F}_{io}(x)=0$ using the Sum-check protocol.
|
||||
So, for this, V will need to check that $\widetilde{F}_{io}$ vanishes over the boolean hypercube ($\widetilde{F}_{io}(x)=0 ~\forall x \in \{0,1\}^s$).
|
||||
|
||||
But: $\sum_{x\in \{0,1\}^s} \widetilde{F}_{io}(x)=0 \centernot\Longleftrightarrow F_{io}(x)=0 \forall x \in \{0,1\}^s$.
|
||||
Recall that $\widetilde{F}_{io}(\cdot)$ is a low-degree multivariate polynomial over $\mathbb{F}$ in $s$ variables.
|
||||
Thus, checking that $\widetilde{F}_{io}$ vanishes over the boolean hypercube is equivalent to checking that $\widetilde{F}_io=0$.
|
||||
|
||||
Thus, V can check $\sum_{x \in \{0,1\}^s} \widetilde{F}_{io}(x)=0$ using the Sum-check protocol (through SZ lemma, V can check if for a random value it equals to 0, and be convinced that applies to all the points whp.).
|
||||
|
||||
But: as $\widetilde{F}_{io}(x)$ is not multilinear, so $\sum_{x\in \{0,1\}^s} \widetilde{F}_{io}(x)=0 \centernot\Longleftrightarrow F_{io}(x)=0 ~\forall x \in \{0,1\}^s$.
|
||||
Bcs: the $2^s$ terms in the sum might cancel each other even when the individual terms are not zero.
|
||||
|
||||
Solution: combine $\widetilde{F}_{io}(x)$ with $\widetilde{eq}(t, x)$ to get $Q_{io}(t, x)$ as a zero-polynomial
|
||||
Solution: combine $\widetilde{F}_{io}(x)$ with $\widetilde{eq}(t, x)$ to get $Q_{io}(t, x)$ which will be the unique multilinear polynomial, and then check that it is a zero-polynomial
|
||||
|
||||
$$Q_{io}(t)= \sum_{x \in \{0,1\}^s} \widetilde{F}_{io}(x) \cdot \widetilde{eq}(t, x)$$
|
||||
|
||||
where $\widetilde{eq}(t, x) = \prod_{i=1}^s (t_i \cdot x_i + (1- t_i) \cdot (1- x_i))$, which is the MLE of $eq(x,e)= \{ 1 ~\text{if}~ x=e,~ 0 ~\text{otherwise} \}$.
|
||||
|
||||
Basically $Q_{io}(\cdot)$ is a multivariate polynomial such that
|
||||
Basically $Q_{io}(\cdot)$ is a multivariate (the unique multilinear) polynomial such that
|
||||
$$Q_{io}(t) = \widetilde{F}_{io}(t) ~\forall t \in \{0,1\}^s$$
|
||||
thus, $Q_{io}(\cdot)$ is a zero-polynomial iff $\widetilde{F}_{io}(x)=0 ~\forall x\in \{0,1\}^s$.
|
||||
$\Longleftrightarrow$ iff $\widetilde{F}_{io}(\cdot)$ encodes a witness $w$ such that $Sat_{R1CS}(x, w)=1$.
|
||||
|
||||
To check that $Q_{io}(\cdot)$ is a zero-polynomial: check $Q_{io}(\tau)=0,~ \tau \in^R \mathbb{F}^s$ (Schwartz-Zippel-DeMillo–Lipton lemma).
|
||||
$\widetilde{F}_{io}(x)$ has degree 2 in each variable, and $\widetilde{eq}(t, x)$ has degree 1 in each variable, so $Q_{io}(t)$ has degree 3 in each variable.
|
||||
|
||||
To check that $Q_{io}(\cdot)$ is a zero-polynomial: check $Q_{io}(\tau)=0,~ \tau \in^R \mathbb{F}^s$ (Schwartz-Zippel-DeMillo–Lipton lemma) through the sum-check protocol.
|
||||
|
||||
This would mean that the R1CS instance is satisfied.
|
||||
|
||||
|
||||
\paragraph{Recap}
|
||||
\begin{itemize}
|
||||
@@ -125,7 +134,12 @@ Recall: $G_{io, \tau}(x) = \widetilde{F}_{io}(x) \cdot \widetilde{eq}(\tau, x)$.
|
||||
|
||||
Evaluating $\widetilde{eq}(\tau, r_x)$ takes $O(log~m)$, but to evaluate $\widetilde{F}_{io}(r_x)$, V needs to evaluate
|
||||
$$\widetilde{A}(r_x, y), \widetilde{B}(r_x, y), \widetilde{C}(r_x, y), \widetilde{Z}(y),~ \forall y \in \{0,1\}^s$$
|
||||
But: evaluations of $\widetilde{Z}(y) ~\forall y \in \{0,1\}^s ~\Longleftrightarrow (io, 1, w)$.
|
||||
|
||||
which requires 3 sum-check instances (\begin{scriptsize}
|
||||
$\left( \sum_{y \in \{0,1\}^s} \widetilde{A}(x, y) \cdot \widetilde{Z}(y) \right)$,\\ $\left( \sum_{y \in \{0,1\}^s} \widetilde{B}(x, y) \cdot \widetilde{Z}(y) \right)$, $\left( \sum_{y \in \{0,1\}^s} \widetilde{C}(x, y) \cdot \widetilde{Z}(y) \right)$
|
||||
\end{scriptsize}), one for each summation in\\ $\widetilde{F}_{io}(x)$.
|
||||
|
||||
But note that evaluations of $\widetilde{Z}(y) ~\forall y \in \{0,1\}^s$ are already known as $(io, 1, w)$.
|
||||
|
||||
Solution: combination of 3 protocols:
|
||||
\begin{itemize}
|
||||
@@ -133,6 +147,7 @@ Solution: combination of 3 protocols:
|
||||
\item randomized mini protocol
|
||||
\item polynomial commitment scheme
|
||||
\end{itemize}
|
||||
Basically to do a random linear combination of the 3 summations to end up doing just a single sum-check.
|
||||
|
||||
Observation: let $\widetilde{F}_{io}(r_x) = \overline{A}(r_x) \cdot \overline{B}(r_x) - \overline{C}(r_x)$, where
|
||||
$$\overline{A}(r_x) = \sum_{y \in \{0,1\}} \widetilde{A}(r_x, y) \cdot \widetilde{Z}(y),~~\overline{B}(r_x) = \sum_{y \in \{0,1\}} \widetilde{B}(r_x, y) \cdot \widetilde{Z}(y)$$
|
||||
@@ -242,6 +257,8 @@ Instead of evaluating $\widetilde{Z}(r_y)$ in $O(|w|)$ communications, P sends a
|
||||
|
||||
Section 6 of the paper, describes how in step 16, instead of evaluating $\widetilde{A},~\widetilde{B},~\widetilde{C}$ at $r_x,~r_y$ with $O(n)$ costs, P commits to $\widetilde{A},~\widetilde{B},~\widetilde{C}$ and later provides proofs of openings.
|
||||
|
||||
In a practical implementation those commits to $\widetilde{A},~\widetilde{B},~\widetilde{C}$ could be done in a preprocessing step.
|
||||
|
||||
\vspace{1cm}
|
||||
\framebox{WIP: covered until sec.6}
|
||||
|
||||
|
||||
@@ -98,7 +98,7 @@ print("z:", z)
|
||||
print("S:", S)
|
||||
print("c:", c)
|
||||
|
||||
# check CCS relation
|
||||
# check CCS relation (this is agnostic to R1CS, for any CCS instance)
|
||||
r = [F(0)] * m
|
||||
for i in range(0, q):
|
||||
hadamard_output = [F(1)]*m
|
||||
|
||||
Reference in New Issue
Block a user