Browse Source

hypernova: add multifolding diagram

also add some more notes to spartan
master
arnaucube 1 year ago
parent
commit
3ea610705a
7 changed files with 80 additions and 12 deletions
  1. BIN
      notes_hypernova.pdf
  2. +54
    -3
      notes_hypernova.tex
  3. BIN
      notes_nova.pdf
  4. +1
    -1
      notes_nova.tex
  5. BIN
      notes_spartan.pdf
  6. +24
    -7
      notes_spartan.tex
  7. +1
    -1
      r1cs-ccs.sage

BIN
notes_hypernova.pdf


+ 54
- 3
notes_hypernova.tex

@ -7,11 +7,38 @@
\usepackage{enumerate}
\usepackage{hyperref}
\usepackage{xcolor}
\usepackage{pgf-umlsd} % diagrams
\usepackage{centernot}
\usepackage{algorithm}
\usepackage{algpseudocode}
\usepackage{pgf-umlsd} % diagrams
% message between threads. From https://tex.stackexchange.com/a/174765
% Example:
% \bloodymess[delay]{sender}{message content}{receiver}{DIR}{start note}{end note}
\newcommand{\bloodymess}[7][0]{
\stepcounter{seqlevel}
\path
(#2)+(0,-\theseqlevel*\unitfactor-0.7*\unitfactor) node (mess from) {};
\addtocounter{seqlevel}{#1}
\path
(#4)+(0,-\theseqlevel*\unitfactor-0.7*\unitfactor) node (mess to) {};
\draw[->,>=angle 60] (mess from) -- (mess to) node[midway, above]
{#3};
\if R#5
\node (\detokenize{#3} from) at (mess from) {\llap{#6~}};
\node (\detokenize{#3} to) at (mess to) {\rlap{~#7}};
\else\if L#5
\node (\detokenize{#3} from) at (mess from) {\rlap{~#6}};
\node (\detokenize{#3} to) at (mess to) {\llap{#7~}};
\else
\node (\detokenize{#3} from) at (mess from) {#6};
\node (\detokenize{#3} to) at (mess to) {#7};
\fi
\fi
}
% prevent warnings of underfull \hbox:
\usepackage{etoolbox}
@ -147,6 +174,30 @@ Let $s= \log m,~ s'= \log n$.
\item $P$: output folded witness: $\widetilde{w}' \leftarrow \widetilde{w}_1 + \rho \cdot \widetilde{w}_2$.
\end{enumerate}
\vspace{1cm}
Multifolding flow:
\begin{center}
\begin{sequencediagram}
\newinst[1]{p}{Prover}
\newinst[3]{v}{Verifier}
\bloodymess[1]{v}{$\gamma,~\beta,~r_x'$}{p}{L}{
\shortstack{
$\gamma \in \mathbb{F},~ \beta \in \mathbb{F}^s$\\
$r_x' \in \mathbb{F}^s$
}
}{}
\bloodymess[1]{p}{$c,~ \pi_{SC}$}{v}{R}{sum-check prove}{sum-check verify}
\bloodymess[1]{p}{$\{\sigma_j\},~\{\theta_j\}$}{v}{R}{compute $\{\sigma_j\}, \{\theta_j\}~ \forall j \in [t]$}{verify $c$ with $\{\sigma_j\}, \{\theta_j\}$ relation}
\bloodymess[1]{v}{$\rho$}{p}{L}{$\rho \in^R \mathbb{F}$}{}
\callself[0]{p}{fold LCCCS instance}{p}
\prelevel
\callself[0]{v}{fold LCCCS instance}{v}
\callself[0]{p}{fold $\widetilde{w}$}{p}
\end{sequencediagram}
\end{center}
\vspace{1cm}
Now, to see the verifier check from step 5, observe that in LCCCS, since $\widetilde{w}$ satisfies,
@ -178,7 +229,7 @@ Then we can see that
\begin{align*}
c &= g(r_x')\\
&= \left( \sum_{j \in [t]} \gamma^j \cdot L_j(r_x') \right) + \gamma^{t+1} \cdot Q(r_x')\\
&= \left( \sum_{j \in [t]} \gamma^j \cdot e_q \cdot \sigma_j \right) + \gamma^{t+1} \cdot e_2 \cdot \sum_{i \in [q]} c_i \prod_{j \in S_i} \theta_j
&= \left( \sum_{j \in [t]} \gamma^j \cdot \overbrace{e_1 \cdot \sigma_j}^{L_j(r_x')} \right) + \gamma^{t+1} \cdot \overbrace{e_2 \cdot \sum_{i \in [q]} c_i \prod_{j \in S_i} \theta_j}^{Q(x)}
\end{align*}
where $e_1 = \widetilde{eq}(r_x, r_x')$ and $e_2=\widetilde{eq}(\beta, r_x')$.
@ -229,7 +280,7 @@ This logic can be defined as follows:
\begin{algorithm}[H]
\caption{Generating a Sparse Multilinear Polynomial from a matrix}
\begin{algorithmic}
\State set empty vector $v \in (\text{index:}~ \mathbb{Z}, x: \mathbb{F})^{s \times s'}$
\State set empty vector $v \in (\text{index:}~ \mathbb{Z}, x: \mathbb{F}^{s \times s'})$
\For {$i$ to $m$}
\For {$j$ to $n$}
\If {$M_{i,j} \neq 0$}

BIN
notes_nova.pdf


+ 1
- 1
notes_nova.tex

@ -170,7 +170,7 @@ Let $Z_1 = (W_1, x_1, u_1)$ and $Z_2 = (W_2, x_2, u_2)$.
\end{align*}
\end{enumerate}
P will proof that knows the valid witness $(E, r_E, W, r_W)$ for the committed relaxed R1CS without revealing its value.
P will prove that knows the valid witness $(E, r_E, W, r_W)$ for the committed relaxed R1CS without revealing its value.
\begin{center}
\begin{sequencediagram}

BIN
notes_spartan.pdf


+ 24
- 7
notes_spartan.tex

@ -89,24 +89,33 @@ $$
\vspace{0.5cm}
$\widetilde{F}_{io}(\cdot)$: low-degree multivariate polynomial over $\mathbb{F}$ in $s$ variables.
Verifier can check if $\sum_{x \in \{0,1\}^s} \widetilde{F}_{io}(x)=0$ using the Sum-check protocol.
So, for this, V will need to check that $\widetilde{F}_{io}$ vanishes over the boolean hypercube ($\widetilde{F}_{io}(x)=0 ~\forall x \in \{0,1\}^s$).
But: $\sum_{x\in \{0,1\}^s} \widetilde{F}_{io}(x)=0 \centernot\Longleftrightarrow F_{io}(x)=0 \forall x \in \{0,1\}^s$.
Recall that $\widetilde{F}_{io}(\cdot)$ is a low-degree multivariate polynomial over $\mathbb{F}$ in $s$ variables.
Thus, checking that $\widetilde{F}_{io}$ vanishes over the boolean hypercube is equivalent to checking that $\widetilde{F}_io=0$.
Thus, V can check $\sum_{x \in \{0,1\}^s} \widetilde{F}_{io}(x)=0$ using the Sum-check protocol (through SZ lemma, V can check if for a random value it equals to 0, and be convinced that applies to all the points whp.).
But: as $\widetilde{F}_{io}(x)$ is not multilinear, so $\sum_{x\in \{0,1\}^s} \widetilde{F}_{io}(x)=0 \centernot\Longleftrightarrow F_{io}(x)=0 ~\forall x \in \{0,1\}^s$.
Bcs: the $2^s$ terms in the sum might cancel each other even when the individual terms are not zero.
Solution: combine $\widetilde{F}_{io}(x)$ with $\widetilde{eq}(t, x)$ to get $Q_{io}(t, x)$ as a zero-polynomial
Solution: combine $\widetilde{F}_{io}(x)$ with $\widetilde{eq}(t, x)$ to get $Q_{io}(t, x)$ which will be the unique multilinear polynomial, and then check that it is a zero-polynomial
$$Q_{io}(t)= \sum_{x \in \{0,1\}^s} \widetilde{F}_{io}(x) \cdot \widetilde{eq}(t, x)$$
where $\widetilde{eq}(t, x) = \prod_{i=1}^s (t_i \cdot x_i + (1- t_i) \cdot (1- x_i))$, which is the MLE of $eq(x,e)= \{ 1 ~\text{if}~ x=e,~ 0 ~\text{otherwise} \}$.
Basically $Q_{io}(\cdot)$ is a multivariate polynomial such that
Basically $Q_{io}(\cdot)$ is a multivariate (the unique multilinear) polynomial such that
$$Q_{io}(t) = \widetilde{F}_{io}(t) ~\forall t \in \{0,1\}^s$$
thus, $Q_{io}(\cdot)$ is a zero-polynomial iff $\widetilde{F}_{io}(x)=0 ~\forall x\in \{0,1\}^s$.
$\Longleftrightarrow$ iff $\widetilde{F}_{io}(\cdot)$ encodes a witness $w$ such that $Sat_{R1CS}(x, w)=1$.
To check that $Q_{io}(\cdot)$ is a zero-polynomial: check $Q_{io}(\tau)=0,~ \tau \in^R \mathbb{F}^s$ (Schwartz-Zippel-DeMillo–Lipton lemma).
$\widetilde{F}_{io}(x)$ has degree 2 in each variable, and $\widetilde{eq}(t, x)$ has degree 1 in each variable, so $Q_{io}(t)$ has degree 3 in each variable.
To check that $Q_{io}(\cdot)$ is a zero-polynomial: check $Q_{io}(\tau)=0,~ \tau \in^R \mathbb{F}^s$ (Schwartz-Zippel-DeMillo–Lipton lemma) through the sum-check protocol.
This would mean that the R1CS instance is satisfied.
\paragraph{Recap}
\begin{itemize}
@ -125,7 +134,12 @@ Recall: $G_{io, \tau}(x) = \widetilde{F}_{io}(x) \cdot \widetilde{eq}(\tau, x)$.
Evaluating $\widetilde{eq}(\tau, r_x)$ takes $O(log~m)$, but to evaluate $\widetilde{F}_{io}(r_x)$, V needs to evaluate
$$\widetilde{A}(r_x, y), \widetilde{B}(r_x, y), \widetilde{C}(r_x, y), \widetilde{Z}(y),~ \forall y \in \{0,1\}^s$$
But: evaluations of $\widetilde{Z}(y) ~\forall y \in \{0,1\}^s ~\Longleftrightarrow (io, 1, w)$.
which requires 3 sum-check instances (\begin{scriptsize}
$\left( \sum_{y \in \{0,1\}^s} \widetilde{A}(x, y) \cdot \widetilde{Z}(y) \right)$,\\ $\left( \sum_{y \in \{0,1\}^s} \widetilde{B}(x, y) \cdot \widetilde{Z}(y) \right)$, $\left( \sum_{y \in \{0,1\}^s} \widetilde{C}(x, y) \cdot \widetilde{Z}(y) \right)$
\end{scriptsize}), one for each summation in\\ $\widetilde{F}_{io}(x)$.
But note that evaluations of $\widetilde{Z}(y) ~\forall y \in \{0,1\}^s$ are already known as $(io, 1, w)$.
Solution: combination of 3 protocols:
\begin{itemize}
@ -133,6 +147,7 @@ Solution: combination of 3 protocols:
\item randomized mini protocol
\item polynomial commitment scheme
\end{itemize}
Basically to do a random linear combination of the 3 summations to end up doing just a single sum-check.
Observation: let $\widetilde{F}_{io}(r_x) = \overline{A}(r_x) \cdot \overline{B}(r_x) - \overline{C}(r_x)$, where
$$\overline{A}(r_x) = \sum_{y \in \{0,1\}} \widetilde{A}(r_x, y) \cdot \widetilde{Z}(y),~~\overline{B}(r_x) = \sum_{y \in \{0,1\}} \widetilde{B}(r_x, y) \cdot \widetilde{Z}(y)$$
@ -242,6 +257,8 @@ Instead of evaluating $\widetilde{Z}(r_y)$ in $O(|w|)$ communications, P sends a
Section 6 of the paper, describes how in step 16, instead of evaluating $\widetilde{A},~\widetilde{B},~\widetilde{C}$ at $r_x,~r_y$ with $O(n)$ costs, P commits to $\widetilde{A},~\widetilde{B},~\widetilde{C}$ and later provides proofs of openings.
In a practical implementation those commits to $\widetilde{A},~\widetilde{B},~\widetilde{C}$ could be done in a preprocessing step.
\vspace{1cm}
\framebox{WIP: covered until sec.6}

+ 1
- 1
r1cs-ccs.sage

@ -98,7 +98,7 @@ print("z:", z)
print("S:", S)
print("c:", c)
# check CCS relation
# check CCS relation (this is agnostic to R1CS, for any CCS instance)
r = [F(0)] * m
for i in range(0, q):
hadamard_output = [F(1)]*m

Loading…
Cancel
Save