Browse Source

add typos.toml config and fix typos

master
arnaucube 8 months ago
parent
commit
4828f66236
24 changed files with 51 additions and 26 deletions
  1. BIN
      abstract-algebra-charles-pinter-notes.pdf
  2. +4
    -4
      abstract-algebra-charles-pinter-notes.tex
  3. +2
    -2
      fft.sage
  4. +2
    -2
      ipa.sage
  5. BIN
      notes_bls-sig.pdf
  6. +2
    -2
      notes_bls-sig.tex
  7. BIN
      notes_caulk.pdf
  8. +1
    -1
      notes_caulk.tex
  9. BIN
      notes_fri.pdf
  10. +20
    -2
      notes_fri.tex
  11. BIN
      notes_hypernova.pdf
  12. +1
    -1
      notes_hypernova.tex
  13. BIN
      notes_nova.pdf
  14. +2
    -2
      notes_nova.tex
  15. BIN
      notes_reed-solomon.pdf
  16. +1
    -1
      notes_reed-solomon.tex
  17. BIN
      notes_sonic.pdf
  18. +2
    -2
      notes_sonic.tex
  19. BIN
      notes_spartan.pdf
  20. +2
    -2
      notes_spartan.tex
  21. +1
    -1
      sigma.sage
  22. BIN
      slides_hypernova-part1-introduction.pdf
  23. +4
    -4
      slides_hypernova-part1-introduction.tex
  24. +7
    -0
      typos.toml

BIN
abstract-algebra-charles-pinter-notes.pdf


+ 4
- 4
abstract-algebra-charles-pinter-notes.tex

@ -97,7 +97,7 @@ Every subgroup of a cyclic group is cyclic.
\begin{definition}[Subgroup] \begin{definition}[Subgroup]
Let $G$ be a group, and $H$ a non-empty subset of $G$. If Let $G$ be a group, and $H$ a non-empty subset of $G$. If
\begin{enumerate}[i.] \begin{enumerate}[i.]
\item the idenity $e$ of $G$ is in $H$.
\item the identity $e$ of $G$ is in $H$.
\item $H$ is closed with respect to the operation. Which is for $a, b \in H$, $ab \in H$. \item $H$ is closed with respect to the operation. Which is for $a, b \in H$, $ab \in H$.
\item $H$ is closed with respect to inverses. Which is for $a \in H$, $a^{-1} \in H$. \item $H$ is closed with respect to inverses. Which is for $a \in H$, $a^{-1} \in H$.
\end{enumerate} \end{enumerate}
@ -174,7 +174,7 @@ In finite sets, if $f: A \rightarrow B$ is injective then $|A| \leq |B|$, and if
\section{Cosets} \section{Cosets}
\begin{definition}[Coset] \begin{definition}[Coset]
Let $G$ be a group, and $H$ a subgroup of $G$. For any element $a$ in $G$, the symbol $aH$ denotes the set of all products $ah$, as $a$ remains fixed and $h$ ranges over $H$. $aH$ is caled a \emph{left coset} of $H$ in $G$.
Let $G$ be a group, and $H$ a subgroup of $G$. For any element $a$ in $G$, the symbol $aH$ denotes the set of all products $ah$, as $a$ remains fixed and $h$ ranges over $H$. $aH$ is called a \emph{left coset} of $H$ in $G$.
\\ \\
In similar fashion, $Ha$ denotes the set of all products $ha$, as $a$ remains fixed an $h$ ranges over $H$. $Ha$ is called a \emph{right coset} of $H$ in $G$. In similar fashion, $Ha$ denotes the set of all products $ha$, as $a$ remains fixed an $h$ ranges over $H$. $Ha$ is called a \emph{right coset} of $H$ in $G$.
\end{definition} \end{definition}
@ -306,7 +306,7 @@ Quotient group construction is useful as a way of actually manufacturing all the
\end{definition} \end{definition}
\begin{definition}[Unity] \begin{definition}[Unity]
A ring does not necessarily have a neutral element for multiplication. If there is in $A$ a neutral element for mulitplication, it is called the \emph{unity} of $A$, and is denoted by the symbol $1$.
A ring does not necessarily have a neutral element for multiplication. If there is in $A$ a neutral element for multiplication, it is called the \emph{unity} of $A$, and is denoted by the symbol $1$.
\\ \\
If $A$ has a unity, we call $A$ a \emph{ring with unity}. If $A$ has a unity, we call $A$ a \emph{ring with unity}.
\end{definition} \end{definition}
@ -531,7 +531,7 @@ Let $a(x) \in F[x]$ be a polynomial of degree $n$. There is an extension field $
The set of all the linear combinations of $\overrightarrow{a_1}, \overrightarrow{a_2}, \ldots, \overrightarrow{a_n}$ is a \emph{subspace of} $V$. The set of all the linear combinations of $\overrightarrow{a_1}, \overrightarrow{a_2}, \ldots, \overrightarrow{a_n}$ is a \emph{subspace of} $V$.
\end{definition} \end{definition}
\begin{definition}[Linear dependancy]
\begin{definition}[Linear dependency]
Let $S = \{$\overrightarrow{a_1}, \overrightarrow{a_2}, \ldots, \overrightarrow{a_n}$\}$ be a set of distinct vectors in a vector space $V$. $S$ is said to be \emph{linearly dependent} if there are scalars $k_1, \ldots, k_n$, not all zero, such that $k_1 \overrightarrow{a_1} + k_2 \overrightarrow{a_2} + \cdots + k_n \overrightarrow{a_n} = 0$. Let $S = \{$\overrightarrow{a_1}, \overrightarrow{a_2}, \ldots, \overrightarrow{a_n}$\}$ be a set of distinct vectors in a vector space $V$. $S$ is said to be \emph{linearly dependent} if there are scalars $k_1, \ldots, k_n$, not all zero, such that $k_1 \overrightarrow{a_1} + k_2 \overrightarrow{a_2} + \cdots + k_n \overrightarrow{a_n} = 0$.
Which is equivalent to saying that at least one of the vectors in $S$ is a linear combination of the others. Which is equivalent to saying that at least one of the vectors in $S$ is a linear combination of the others.

+ 2
- 2
fft.sage

@ -41,7 +41,7 @@ def fft(F, n):
return w, ft, ft_inv return w, ft, ft_inv
# Fast polynomial multiplicaton using FFT
# Fast polynomial multiplication using FFT
def poly_mul(fa, fb, F, n): def poly_mul(fa, fb, F, n):
w, ft, ft_inv = fft(F, n) w, ft, ft_inv = fft(F, n)
@ -126,7 +126,7 @@ print("fa_eval'", fa_eval)
assert fa_eval2 == fa_eval assert fa_eval2 == fa_eval
# Fast polynomial multiplicaton using FFT
# Fast polynomial multiplication using FFT
print("\n---------") print("\n---------")
print("---Fast polynomial multiplication using FFT") print("---Fast polynomial multiplication using FFT")

+ 2
- 2
ipa.sage

@ -184,7 +184,7 @@ class IPA_halo:
return a[0], l, r, L, R return a[0], l, r, L, R
def verify(self, P, a, v, x_powers, r, u, U, lj, rj, L, R): def verify(self, P, a, v, x_powers, r, u, U, lj, rj, L, R):
print("methid verify()")
print("method verify()")
# compute P' = P + [v] U # compute P' = P + [v] U
P = P + int(v) * U P = P + int(v) * U
@ -323,7 +323,7 @@ h = 1
q = g.order() q = g.order()
Fq = GF(q) Fq = GF(q)
# simplier curve values
# simpler curve values
# p = 19 # p = 19
# Fp = GF(p) # Fp = GF(p)
# E = EllipticCurve(Fp,[0,3]) # E = EllipticCurve(Fp,[0,3])

BIN
notes_bls-sig.pdf


+ 2
- 2
notes_bls-sig.tex

@ -57,12 +57,12 @@ $$e(pk, H(m)) = e([sk] \cdot g_1, H(m) = e(g_1, H(m))^{sk} = e(g_1, [sk] \cdot H
\paragraph{Aggregation} \paragraph{Aggregation}
Signatures aggregation: Signatures aggregation:
$$\sigma_{aggr} = \sigma_1 + \sigma_2 + \ldots + \sigma_n$$ $$\sigma_{aggr} = \sigma_1 + \sigma_2 + \ldots + \sigma_n$$
where $\sigma_{aggr} \in G_2$, and an aggregated signatures is indistinguishible from a non-aggregated signature.
where $\sigma_{aggr} \in G_2$, and an aggregated signatures is indistinguishable from a non-aggregated signature.
\vspace{0.5cm} \vspace{0.5cm}
Public keys aggregation: Public keys aggregation:
$$pk_{aggr} = pk_1 + pk_2 + \ldots + pk_n$$ $$pk_{aggr} = pk_1 + pk_2 + \ldots + pk_n$$
where $pk_{aggr} \in G_1$, and an aggregated public keys is indistinguishible from a non-aggregated public key.
where $pk_{aggr} \in G_1$, and an aggregated public keys is indistinguishable from a non-aggregated public key.
\paragraph{Verification of aggregated signatures} \paragraph{Verification of aggregated signatures}

BIN
notes_caulk.pdf


+ 1
- 1
notes_caulk.tex

@ -358,7 +358,7 @@ $[W_2^i(x)]_2 ~~\forall i \in I$, where $W_2^i(X) = \frac{Z_{\mathbb{H}}(X)}{X-\
\item $Z_I'(X)= r_1 \prod_{i \in I} (X - \omega^i)$ \item $Z_I'(X)= r_1 \prod_{i \in I} (X - \omega^i)$
\item $C_I(X)=\sum_{i \in I} c_i \tau_i(X)$ (unblinded) \item $C_I(X)=\sum_{i \in I} c_i \tau_i(X)$ (unblinded)
\item blinded $C_I'(X)=C_I(X) + (r_2 + r_3 X + r_4 X^2) Z_I'(X)$ \item blinded $C_I'(X)=C_I(X) + (r_2 + r_3 X + r_4 X^2) Z_I'(X)$
\item set $U(x)$, being degree $m-1$ interploation over $\mathbb{V}$ with $U(v_i)=\omega^{u(i)},~ \forall i\in [m]$
\item set $U(x)$, being degree $m-1$ interpolation over $\mathbb{V}$ with $U(v_i)=\omega^{u(i)},~ \forall i\in [m]$
\item blinded $U'(X)= U(X) + (r_5 + r_6 X) Z_{\mathbb{V}}(X)$ \item blinded $U'(X)= U(X) + (r_5 + r_6 X) Z_{\mathbb{V}}(X)$
\item return $z_I=[Z_I'(x)]_1,~ c_I=[C_I'(x)]_1,~ u=[U'(X)]_1$ \item return $z_I=[Z_I'(x)]_1,~ c_I=[C_I'(x)]_1,~ u=[U'(X)]_1$
\end{enumerate} \end{enumerate}

BIN
notes_fri.pdf


+ 20
- 2
notes_fri.tex

@ -7,6 +7,8 @@
\usepackage{enumerate} \usepackage{enumerate}
\usepackage{hyperref} \usepackage{hyperref}
\usepackage{xcolor} \usepackage{xcolor}
% \usepackage{pgf-umlsd} % diagrams
% prevent warnings of underfull \hbox: % prevent warnings of underfull \hbox:
\usepackage{etoolbox} \usepackage{etoolbox}
@ -32,7 +34,7 @@
\maketitle \maketitle
\begin{abstract} \begin{abstract}
Notes taken from \href{https://sites.google.com/site/vincenzoiovinoit/}{Vincenzo Iovino} \cite{vincenzoiovino} explainations about FRI \cite{fri}, \cite{cryptoeprint:2022/1216}, \cite{cryptoeprint:2019/1020}.
Notes taken from \href{https://sites.google.com/site/vincenzoiovinoit/}{Vincenzo Iovino} \cite{vincenzoiovino} explanations about FRI \cite{fri}, \cite{cryptoeprint:2022/1216}, \cite{cryptoeprint:2019/1020}.
These notes are for self-consumption, are not complete, don't include all the steps neither all the proofs. These notes are for self-consumption, are not complete, don't include all the steps neither all the proofs.
@ -68,7 +70,7 @@ Consider the following protocol:
\item V checks $f(r)=g(r) + \alpha h(r)$. (Schwartz-Zippel lema). \item V checks $f(r)=g(r) + \alpha h(r)$. (Schwartz-Zippel lema).
If holds, V can be certain that $f(x)=g(x)+ \alpha h(x)$. If holds, V can be certain that $f(x)=g(x)+ \alpha h(x)$.
\item P proves that $deg(f) \leq d$. \item P proves that $deg(f) \leq d$.
\item If V is convinced that $deg(f) \leq d$, V belives that both $g, h$ have $deg \leq d$.
\item If V is convinced that $deg(f) \leq d$, V believes that both $g, h$ have $deg \leq d$.
\end{enumerate} \end{enumerate}
%/// TODO tabulate this next lines %/// TODO tabulate this next lines
@ -183,6 +185,22 @@ P would receive a challenge $z \in D$ set by V (where $D$ is the evaluation doma
\item[] Constant values of last iteration: $\{f_k^L,~f_k^R\}$, for $k=log(d)$ \item[] Constant values of last iteration: $\{f_k^L,~f_k^R\}$, for $k=log(d)$
\end{itemize} \end{itemize}
% \begin{figure}[htp]
% \centering
% \begin{footnotesize}
% \begin{sequencediagram}
% \newinst[0]{p}{Prover}
% \newinst[5]{v}{Verifier}
%
% \mess{p}{$\{Comm(f_i)\}_0^{log(d)},~ \{f_i(z^{2^i}),~f_i(-(z^{2^i})) \}_0^{log(d)},~ \{f_k^L,~ f_k^R\}$}{v}
%
% \end{sequencediagram}
% \end{footnotesize}
% \caption[FRI-LDT]{sketch of the FRI-LDT flow}
% \label{fig:fri-ldt}
% \end{figure}
\paragraph{Verification} \paragraph{Verification}
V receives: V receives:

BIN
notes_hypernova.pdf


+ 1
- 1
notes_hypernova.tex

@ -263,7 +263,7 @@ c &= \left(
\end{align} \end{align}
$$\textcolor{gray}{(Recall,~ g(x) := \left( \sum_{j \in [t]} \gamma^j \cdot L_j(x) \right) + \gamma^{t+1} \cdot Q(x))}$$ $$\textcolor{gray}{(Recall,~ g(x) := \left( \sum_{j \in [t]} \gamma^j \cdot L_j(x) \right) + \gamma^{t+1} \cdot Q(x))}$$
Outputed LCCCS: $(C', u', x', \textcolor{pink}{r_x'}, v_1', \ldots, v_t')$
Outputted LCCCS: $(C', u', x', \textcolor{pink}{r_x'}, v_1', \ldots, v_t')$
\framebox{\begin{minipage}{4.3 in} \framebox{\begin{minipage}{4.3 in}

BIN
notes_nova.pdf


+ 2
- 2
notes_nova.tex

@ -124,7 +124,7 @@ Problem: not non-trivial, and not zero-knowledge. Solution: use polynomial commi
\paragraph{Committed Relaxed R1CS} \paragraph{Committed Relaxed R1CS}
Instance for a Committed Relaxed R1CS\\ Instance for a Committed Relaxed R1CS\\
$(\overline{E}, u, \overline{W}, x)$, satisfyied by a witness $(E, r_E, W, r_W)$ such that
$(\overline{E}, u, \overline{W}, x)$, satisfied by a witness $(E, r_E, W, r_W)$ such that
\begin{align*} \begin{align*}
&\overline{E} = Com(E, r_E)\\ &\overline{E} = Com(E, r_E)\\
&\overline{W} = Com(E, r_W)\\ &\overline{W} = Com(E, r_W)\\
@ -207,7 +207,7 @@ P will prove that knows the valid witness $(E, r_E, W, r_W)$ for the committed r
The previous protocol achieves non-interactivity via Fiat-Shamir transform, obtaining a \emph{Non-Interactive Folding Scheme for Committed Relaxed R1CS}. The previous protocol achieves non-interactivity via Fiat-Shamir transform, obtaining a \emph{Non-Interactive Folding Scheme for Committed Relaxed R1CS}.
Note: the paper later uses $\mathsf{u}_i,~ \mathsf{U}_i$ for the two inputed $\varphi_1,~ \varphi_2$, and later $\mathsf{u}_{i+1}$ for the outputed $\varphi$. Also, the paper later uses $\mathsf{w},~ \mathsf{W}$ to refer to the witnesses of two folded instances (eg. $\mathsf{w}=(E, r_E, W, r_W)$).
Note: the paper later uses $\mathsf{u}_i,~ \mathsf{U}_i$ for the two inputted $\varphi_1,~ \varphi_2$, and later $\mathsf{u}_{i+1}$ for the outputted $\varphi$. Also, the paper later uses $\mathsf{w},~ \mathsf{W}$ to refer to the witnesses of two folded instances (eg. $\mathsf{w}=(E, r_E, W, r_W)$).
\subsection{NIFS} \subsection{NIFS}

BIN
notes_reed-solomon.pdf


+ 1
- 1
notes_reed-solomon.tex

@ -155,7 +155,7 @@ Furthermore, in our use case in the context of FRI IOP, we are not interested in
Let $g(x)$ be the generator polynomial Let $g(x)$ be the generator polynomial
$$g(x) = (x-\alpha) (x-\alpha^2) \cdots (x-\alpha^{2s-1})$$ $$g(x) = (x-\alpha) (x-\alpha^2) \cdots (x-\alpha^{2s-1})$$
whith $\alpha$ being a primitive element of $GF(p^r)$.
with $\alpha$ being a primitive element of $GF(p^r)$.
The \emph{encoder} wants to map the message $\{ m_0, m_1, \ldots, m_{k-1} \}$ into a polynomial $p(x)$ of degree $<k$ such that The \emph{encoder} wants to map the message $\{ m_0, m_1, \ldots, m_{k-1} \}$ into a polynomial $p(x)$ of degree $<k$ such that

BIN
notes_sonic.pdf


+ 2
- 2
notes_sonic.tex

@ -98,7 +98,7 @@ Combine the multiplicative and linear constraints to:
+ \sum_{i=1}^n a_i b_i (Y^i + Y^{-i}) - k(Y) = 0 + \sum_{i=1}^n a_i b_i (Y^i + Y^{-i}) - k(Y) = 0
\end{align} \end{align}
where $a \cdot u(Y) + b \cdot v(Y) + c \cdot w(Y)$ is embeded into the constant term of the polynomial $t(X, Y)$.
where $a \cdot u(Y) + b \cdot v(Y) + c \cdot w(Y)$ is embedded into the constant term of the polynomial $t(X, Y)$.
Define $r(X, Y)$ s.t. $r(X, Y) = r(XY, 1)$. Define $r(X, Y)$ s.t. $r(X, Y) = r(XY, 1)$.
@ -154,7 +154,7 @@ PC scheme (adaptation of KZG):
== e(F, h^{x^{-d+max}})$$ == e(F, h^{x^{-d+max}})$$
\end{enumerate} \end{enumerate}
\subsection{Succint signatures of correct computation}
\subsection{Succinct signatures of correct computation}
Signature of correct computation to ensure that an element $s=s(z, y)$ for a known polynomial Signature of correct computation to ensure that an element $s=s(z, y)$ for a known polynomial
$$s(X, Y) = \sum_{i, j = -d}^d s_{i, j} \cdot X^i \cdot Y^i$$ $$s(X, Y) = \sum_{i, j = -d}^d s_{i, j} \cdot X^i \cdot Y^i$$

BIN
notes_spartan.pdf


+ 2
- 2
notes_spartan.tex

@ -125,7 +125,7 @@ This would mean that the R1CS instance is satisfied.
\item[] Thus $Q_{io}(t)= \sum_{x \in \{0,1\}^s} \widetilde{F}_{io}(x) \cdot \widetilde{eq}(t, x)$, and then we prove that $Q_{io}(\tau)=0$, for $\tau \in^R \mathbb{F}^s$. \item[] Thus $Q_{io}(t)= \sum_{x \in \{0,1\}^s} \widetilde{F}_{io}(x) \cdot \widetilde{eq}(t, x)$, and then we prove that $Q_{io}(\tau)=0$, for $\tau \in^R \mathbb{F}^s$.
\end{itemize} \end{itemize}
\section{NIZKs with succint proofs for R1CS}
\section{NIZKs with succinct proofs for R1CS}
From Thm 4.1: to check R1CS instance $(\mathbb{F}, A, B, C, io, m, n)$ V can check if From Thm 4.1: to check R1CS instance $(\mathbb{F}, A, B, C, io, m, n)$ V can check if
$\sum_{x \in \{0,1\}^s} G_{io, \tau} (x) = 0$, which through sum-check protocol can be reduced to $e_x = G_{io, \tau} (r_x)$, where $r_x \in \mathbb{F}^s$. $\sum_{x \in \{0,1\}^s} G_{io, \tau} (x) = 0$, which through sum-check protocol can be reduced to $e_x = G_{io, \tau} (r_x)$, where $r_x \in \mathbb{F}^s$.
@ -247,7 +247,7 @@ Instead of evaluating $\widetilde{Z}(r_y)$ in $O(|w|)$ communications, P sends a
\item Sum-check 2. $e_y \leftarrow <P_{SC}(M_{r_x}), V_{SC}(r_y)>(\mu_2, l_2, T_2)$ \item Sum-check 2. $e_y \leftarrow <P_{SC}(M_{r_x}), V_{SC}(r_y)>(\mu_2, l_2, T_2)$
\item P: $v \leftarrow \widetilde{w}(r_y[1..])$, send $v$ to V \item P: $v \leftarrow \widetilde{w}(r_y[1..])$, send $v$ to V
\item $b_e \leftarrow <P_{PC.Eval}(\widetilde{w}, S), V_{PC.Eval}(r)>(pp, C, r_y, v, \mu_2)$ \item $b_e \leftarrow <P_{PC.Eval}(\widetilde{w}, S), V_{PC.Eval}(r)>(pp, C, r_y, v, \mu_2)$
\item V: abourt with $b=0$ if $b_e==0$
\item V: abort with $b=0$ if $b_e==0$
\item V: $v_z \leftarrow (1 - r_y[0]) \cdot \widetilde{w}(r_y [1..]) + r_y[0] \widetilde{(io, 1)} (r_y[1..])$ \item V: $v_z \leftarrow (1 - r_y[0]) \cdot \widetilde{w}(r_y [1..]) + r_y[0] \widetilde{(io, 1)} (r_y[1..])$
\item V: $v_1 \leftarrow \widetilde{A}(r_x, r_y),~ v_2 \leftarrow \widetilde{B}(r_x, r_y),~ v_3 \leftarrow \widetilde{C}(r_x, r_y)$ \item V: $v_1 \leftarrow \widetilde{A}(r_x, r_y),~ v_2 \leftarrow \widetilde{B}(r_x, r_y),~ v_3 \leftarrow \widetilde{C}(r_x, r_y)$
\item V: abort with $b=0$ if $e_y \neq (r_A v_1 + r_B v_2 + r_C v_3) \cdot v_z$ \item V: abort with $b=0$ if $e_y \neq (r_A v_1 + r_B v_2 + r_C v_3) \cdot v_z$

+ 1
- 1
sigma.sage

@ -325,7 +325,7 @@ class TestORProof(unittest.TestCase):
# Alice generates key pair # Alice generates key pair
X = alice.new_key() X = alice.new_key()
Xs.insert(0, X) # add X at the begining of Xs array
Xs.insert(0, X) # add X at the beginning of Xs array
# Alice generates commitments (internally running the simulator) # Alice generates commitments (internally running the simulator)
As = alice.gen_commitments(Xs) As = alice.gen_commitments(Xs)

BIN
slides_hypernova-part1-introduction.pdf


+ 4
- 4
slides_hypernova-part1-introduction.tex

@ -77,7 +77,7 @@ We used to use recursive SNARKs to achieve IVC.
$$Az \circ Bz = Cz$$ $$Az \circ Bz = Cz$$
Typically we use some scheme to prove that the previous equation is fullfilled by some private $w$ (eg. Groth16, Marlin, Spartan, etc).
Typically we use some scheme to prove that the previous equation is fulfilled by some private $w$ (eg. Groth16, Marlin, Spartan, etc).
\end{frame} \end{frame}
@ -114,7 +114,7 @@ We're not verifying the entire proof
\begin{itemize} \begin{itemize}
\item Take n instances and 'batch' them together \item Take n instances and 'batch' them together
\begin{itemize} \begin{itemize}
\item Folds $k$ (eg. 2) instances (eg. R1CS instances) and their respective witnesses into a signle one
\item Folds $k$ (eg. 2) instances (eg. R1CS instances) and their respective witnesses into a single one
\end{itemize} \end{itemize}
\item At the end of the chain of folds, we just prove that the last fold is correct through a SNARK \item At the end of the chain of folds, we just prove that the last fold is correct through a SNARK
\begin{itemize} \begin{itemize}
@ -136,7 +136,7 @@ In Nova: folding without a SNARK, we just reduce the satisfiability of the 2 inp
$$Az \circ Bz = u \cdot Cz + E$$ $$Az \circ Bz = u \cdot Cz + E$$
\begin{scriptsize} % TODO use the other simplier font syntax
\begin{scriptsize} % TODO use the other simpler font syntax
(= R1CS when $u=1,~ E=0$) (= R1CS when $u=1,~ E=0$)
\end{scriptsize} \end{scriptsize}
@ -189,7 +189,7 @@ Let $z_1 = (w_1, x_1, u_1)$ and $z_2 = (w_2, x_2, u_2)$.
\end{footnotesize} \end{footnotesize}
\pause \pause
\begin{scriptsize} \begin{scriptsize}
Note: $T$ are the cross-terms comming from combining the two R1CS instances from
Note: $T$ are the cross-terms coming from combining the two R1CS instances from
\begin{align*} \begin{align*}
Az \circ Bz &=A(z_1 + r \cdot z_2) \circ B(z_1 + r z_2)\\ Az \circ Bz &=A(z_1 + r \cdot z_2) \circ B(z_1 + r z_2)\\
&=A z_1 \circ B z_1 + r(A z_1 \circ B z_2 + A z_2 \circ B z_1) + r^2 (A z_2 \circ B z_2) = \ldots &=A z_1 \circ B z_1 + r(A z_1 \circ B z_2 + A z_2 \circ B z_1) + r^2 (A z_2 \circ B z_2) = \ldots

+ 7
- 0
typos.toml

@ -0,0 +1,7 @@
# usage:
# install `typos`: https://github.com/crate-ci/typos
# run: typos --config typos.toml
[default.extend-words]
groth = "groth"
pinter = "pinter"

Loading…
Cancel
Save