mirror of
https://github.com/arnaucube/math.git
synced 2026-01-30 15:46:42 +01:00
port notes on propositions 5.3, 5.7, 5.8
This commit is contained in:
1
.github/workflows/typos.toml
vendored
1
.github/workflows/typos.toml
vendored
@@ -6,6 +6,7 @@
|
|||||||
iddeal = "ideal"
|
iddeal = "ideal"
|
||||||
iddeals = "ideals"
|
iddeals = "ideals"
|
||||||
allpha = "alpha"
|
allpha = "alpha"
|
||||||
|
fieldd = "field"
|
||||||
|
|
||||||
# strings that are not a typo:
|
# strings that are not a typo:
|
||||||
thm = "thm"
|
thm = "thm"
|
||||||
|
|||||||
Binary file not shown.
@@ -1434,6 +1434,8 @@ Note: for $k$ a field, $k[X_1, \ldots, X_n]$, $m$ maximal ideal; the residue fie
|
|||||||
|
|
||||||
|
|
||||||
\vspace{0.5cm}
|
\vspace{0.5cm}
|
||||||
|
\subsection{Variety}
|
||||||
|
|
||||||
\begin{defn}{5.3}[Variety]
|
\begin{defn}{5.3}[Variety]
|
||||||
A \emph{variety} $V \subset k^n$:
|
A \emph{variety} $V \subset k^n$:
|
||||||
$$ V = V(J) = \{ P=(a_1, \ldots, a_n) \in k^n | f(P)=0 ~\forall~ f \in J \}$$
|
$$ V = V(J) = \{ P=(a_1, \ldots, a_n) \in k^n | f(P)=0 ~\forall~ f \in J \}$$
|
||||||
@@ -1445,9 +1447,45 @@ Note: for $k$ a field, $k[X_1, \ldots, X_n]$, $m$ maximal ideal; the residue fie
|
|||||||
\end{defn}
|
\end{defn}
|
||||||
|
|
||||||
\begin{prop}{5.3} \label{5.3}
|
\begin{prop}{5.3} \label{5.3}
|
||||||
TODO
|
$k$ an algebraically closed field, and $A=k[X_1, \ldots, X_n]$ a fingen $k$-algebra of the form $A=k[X_1, \ldots, X_n]/J$, where $J$ is an ideal of $k[X_1, \ldots, X_n]$.
|
||||||
|
(notation: $x_i = X_i \pmod J$)
|
||||||
|
|
||||||
|
Then every maximal ideal of $A$ is of the form
|
||||||
|
$$(x_1 -a_1, \ldots, x_n - a_n)$$
|
||||||
|
for some point $(a_1, \ldots, a_n) \in V(J)$.
|
||||||
|
|
||||||
|
Therefore, $\exists$ a one-to-one correspondence
|
||||||
|
\begin{align*}
|
||||||
|
V(X) &\longleftrightarrow m-Spec A\\
|
||||||
|
\text{given by}~~~(a_1, \ldots, a_n) &\longleftrightarrow (x_1 -a_1, \ldots, x_n - a_n)
|
||||||
|
\end{align*}
|
||||||
\end{prop}
|
\end{prop}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
the ideals of $A$ are given by ideals of $k[X_1, \ldots, X_n]$ containing $J$, since for $Q=R/I$, $\exists$ one-to-one correspondence between ideals of $Q$ and ideals of $R$ that contain $I$, ie.
|
||||||
|
\begin{align*}
|
||||||
|
m \subset A \longleftrightarrow &m' \subseteq k[X_1, \ldots, X_n]\\
|
||||||
|
&\text{s.th.}~ J \subseteq m'
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Thus, every maximal ideal of $A$ is of the form
|
||||||
|
$$\underbrace{(x_1 -a_1, \ldots, x_n - a_n)}_{i.} ~\text{such that}~ \underbrace{J \subset (X_1 - a_1, \ldots, X_n - a_n)}_{ii.}$$
|
||||||
|
|
||||||
|
\begin{enumerate}[i.]
|
||||||
|
\item Since $k$ is algebraically closed, the maximal ideals of $k[X_1, \ldots, X_n]$ look like $m=(X_1 - a_1, \ldots, X_n - a_n)$ for some point $(a_1, \ldots, a_n) \in k^n$.
|
||||||
|
|
||||||
|
Which when projected to the quotient ring $A$, $X_i \longmapsto x_i$ (residue class), giving $(x_1 - a_1, \ldots, x_n - a_n)$.
|
||||||
|
|
||||||
|
\item for $m$ to exist in $A$, the corresponding $m'$ must contain $J$; since if it didn't contain $J$ it wouldn't "survive" the quotient process.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
\vspace{0.3cm}
|
||||||
|
However, since $(X_1 - a_1, \ldots, X_n - a_n)$ is the kernel of the evaluation map $f \longmapsto f(a_1, \ldots, a_n)$
|
||||||
|
|
||||||
|
$\Longrightarrow~$ means that $m'=(X_1 - a_1, \ldots, X_n - a_n)$ consists of all polynomials that vanish at point $P=(a_1, \ldots, a_n)$.
|
||||||
|
|
||||||
|
If $J \subseteq m'$, then $\forall~ f \in J$ must vanish at $P$.
|
||||||
|
|
||||||
|
By definition, the set of points where all polynomials in $J$ vanish is the \emph{variety}, $V(J)$.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\begin{prop}{5.5}[Correspondeces $V$ and $I$] \label{5.5}
|
\begin{prop}{5.5}[Correspondeces $V$ and $I$] \label{5.5}
|
||||||
@@ -1468,6 +1506,10 @@ Note: for $k$ a field, $k[X_1, \ldots, X_n]$, $m$ maximal ideal; the residue fie
|
|||||||
$$J \subset J' ~\Longrightarrow~ V(J) \supset V(J') ~~~~\text{and}~~~~ X \subset Y ~\Longrightarrow~ I(X) \supset I(Y)$$
|
$$J \subset J' ~\Longrightarrow~ V(J) \supset V(J') ~~~~\text{and}~~~~ X \subset Y ~\Longrightarrow~ I(X) \supset I(Y)$$
|
||||||
\end{prop}
|
\end{prop}
|
||||||
|
|
||||||
|
|
||||||
|
\vspace{0.4cm}
|
||||||
|
\subsection{Nullstellensatz}
|
||||||
|
|
||||||
\vspace{0.5cm}
|
\vspace{0.5cm}
|
||||||
\begin{thm}{5.6}[Nullstellensatz] \label{nullstellensatz}
|
\begin{thm}{5.6}[Nullstellensatz] \label{nullstellensatz}
|
||||||
Let $k$ algebraically closed field.
|
Let $k$ algebraically closed field.
|
||||||
@@ -1545,6 +1587,100 @@ Note: for $k$ a field, $k[X_1, \ldots, X_n]$, $m$ maximal ideal; the residue fie
|
|||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
|
||||||
|
\vspace{0.4cm}
|
||||||
|
\subsection{Irreducible varieties}
|
||||||
|
|
||||||
|
\begin{defn}{5.7}[Irreducible variety]
|
||||||
|
a variety $X \subset k^n$ is \emph{irreducible} if it is nonempty and not the union of two proper subvarieties; that is, if
|
||||||
|
$$X = X_1 \cup X_2 ~~\text{for varieties}~ X_1, X_2 ~\Longrightarrow~ X= X_1 ~\text{or}~ X_2$$
|
||||||
|
\end{defn}
|
||||||
|
|
||||||
|
\begin{prop}{5.7} \label{5.7}
|
||||||
|
a variety $X$ is irreducible iff $I(X)$ is prime.
|
||||||
|
\end{prop}
|
||||||
|
\begin{proof}
|
||||||
|
set $I=I(X)$.
|
||||||
|
|
||||||
|
if $I$ not prime, then $f,g \in A \setminus I$ be such that $fg \in I$.
|
||||||
|
|
||||||
|
Define new ideals
|
||||||
|
$$J_1=(I, f) ~~\text{and}~~ J_2=(I, g)$$
|
||||||
|
|
||||||
|
Then, since $f \not\in I(X)$, it follows that $V(J_1) \subsetneq X$
|
||||||
|
|
||||||
|
\hspace*{2em}$\Longrightarrow$ so $X=V(J_1) \cup V(J_2)$ is reducible.
|
||||||
|
|
||||||
|
The converse is similar.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\begin{cor}{5.8} \label{cor.5.8}
|
||||||
|
let $k$ algebraically closed field. Then $V$ and $I$ induce one-to-one correspondences
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\{ \text{radical ideals}~J~\text{of}~k[X_1, \ldots, X_n] \} &\longleftrightarrow \{ \text{varieties}~ X \subset k^n \}\\
|
||||||
|
\{ \text{prime ideals}~P~\text{of}~k[X_1, \ldots, X_n] \} &\longleftrightarrow \{ \text{irreducible varieties}~ X \subset k^n \}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Therefore,
|
||||||
|
$$Spec k[X_1, \ldots, X_n] = \{ \text{irreducible varieties}~ X \subset k^n \}$$
|
||||||
|
\end{corollary}
|
||||||
|
\end{cor}
|
||||||
|
|
||||||
|
\begin{prop}{5.8} \label{5.8}
|
||||||
|
let $A= k[x_1, \ldots, x_n]$ a fingen $k$-algebra ($k$ an algebraically closed field).
|
||||||
|
|
||||||
|
Write $J$ for the ideal of relations holding between $x_1, \ldots, x_n$, so that $A=k[X_1, \ldots, X_n]/J$.
|
||||||
|
|
||||||
|
Then there is a one-to-one correspondence
|
||||||
|
$$Spec A \longleftrightarrow \{ \text{irreducible subvarieties}~ X \subset V(J) \}$$
|
||||||
|
\end{prop}
|
||||||
|
\begin{proof}
|
||||||
|
By definition, $Spec A = \{ P ~|~ P \subset A ~\text{is prime ideal} \}$.
|
||||||
|
|
||||||
|
By Corollary \ref{cor.5.8}:
|
||||||
|
$$\{ \text{prime ideals}~P~\text{of}~k[X_1, \ldots, X_n] \} &\longleftrightarrow \{ \text{irreducible varieties}~ X \subset k^n \}$$
|
||||||
|
|
||||||
|
About varieties:
|
||||||
|
\begin{itemize}
|
||||||
|
\item $I(X)$ in $R=k[X_1, \ldots, X_n]$ is the ideal of the variety $X$\\
|
||||||
|
\hspace*{2em}ie. the set of all polynomials that vanish on every point of $X$.
|
||||||
|
\item $I(X)$ in $A=k[X_1, \ldots, X_n]/J$, we're not looking at all possible polynomials but at the residue classes.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
If $P$ is prime in $A~~\Longrightarrow~$ it must correspond to some prime ideal $\mathfrak{P}$ in $R$ (also $J \subset R$).
|
||||||
|
|
||||||
|
Then from Nullstellensatz (\ref{nullstellensatz}), every prime ideal $\mathfrak{P}$ in $R$ is the ideal of some irreducible variety $X$.\\
|
||||||
|
\hspace*{2em}$\Longrightarrow~~ \mathfrak{P}=I(X)$.
|
||||||
|
|
||||||
|
|
||||||
|
Since we're restricted to the ring $A=k[X_1, \ldots, X_n]/J$, the ideal $P$ are the elements of $I(X)$ viewed through the lens of the quotient\\
|
||||||
|
$$\Longrightarrow~~ P = \{ f+J ~|~ f \in I(X) \}~~ = I(X) ~\text{mod}~J$$
|
||||||
|
|
||||||
|
Now, $J$ is the set of equations defining our "universe" $V(J)$.
|
||||||
|
|
||||||
|
Since $A=R/J ~~ \Longrightarrow~$ we thus have $J \subseteq R$.
|
||||||
|
|
||||||
|
Also we have a correspondence between $A=R/J$ and $R$.
|
||||||
|
|
||||||
|
Let $\mathfrak{P}$ be the preimage of $P$ in $R=k[X_1, \ldots, X_n]$, ie.
|
||||||
|
\begin{align*}
|
||||||
|
R &\longrightarrow A=R/J\\
|
||||||
|
\mathfrak{P} &\longmapsto P\\
|
||||||
|
I(X) &\longmapsto I(X) ~\text{mod}~J
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
$\Longrightarrow~ \text{thus}~ J \subseteq \mathfrak{P}$.
|
||||||
|
|
||||||
|
|
||||||
|
Now, $J \susbset \mathfrak{P} = I(X)$;\\
|
||||||
|
by \ref{5.5}, the set of points where $\mathfrak{P}$ vanishes must be inside the set of points where $J$ vanishes, so
|
||||||
|
$$V(J) \supseteq V(\mathfrak{P}) = V(I(X)) = X$$
|
||||||
|
$\Longrightarrow~~ X \subseteq V(J)$, ie. the irreducible variety $X$ must be a subvariety of $V(J)$.
|
||||||
|
|
||||||
|
Therefore,
|
||||||
|
$$\mathfrak{P} \in Spec A \longleftrightarrow X \subseteq V(J)$$
|
||||||
|
where $X = V(\mathfrak{P})$.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
\newpage
|
\newpage
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user