Browse Source

improve Cayley-Hamilton proof (specially determinant trick explanation)

commutative-alg
arnaucube 1 week ago
parent
commit
606cfcbde7
2 changed files with 155 additions and 40 deletions
  1. BIN
      commutative-algebra-notes.pdf
  2. +155
    -40
      commutative-algebra-notes.tex

BIN
commutative-algebra-notes.pdf


+ 155
- 40
commutative-algebra-notes.tex

@ -324,47 +324,66 @@ $A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi
\end{pmatrix} \end{pmatrix}
$$ $$
Kronecker delta:
$\delta_{ij} =
\begin{cases}
1 & \text{if } i = j,\\
0 & \text{otherwise}
\end{cases}$
With the Kronecker delta, $\psi(x_i)$ can be expressed as
$$\psi(x_i) = \sum_{j=1}^n \delta_{ij} \psi(x_j)$$
so the previous matrix can be characterized as
$$\sum_{j=1}^n (\delta_{ij} \psi - a_{ij}) x_j = 0$$
The entries of the matrix are \emph{endomorphisms} (elements of the ring $A[\psi]$)
\begin{itemize}
\item the term $(\psi - a_{11})$ is an operator that acts on $x_1$; as $(\psi(x_1)-a_{11}\cdot x_1)$
\item the term $(-a_{12})$ is an operator that acts on $x_2$; as multiplication by it, ie. $(-a_{12} \cdot x_2)$
\end{itemize}
Since $A$ is a commutative ring, and $\psi$ commutes with any $a \in A$,
the ring of operators $A[\psi]$ is a commutative ring.
Denote the previous matrix by $\Phi$. Let $m$ denote the vector $(x_1, x_2, \ldots, x_n)^T$ (ie. the vector of generators of the $A$-module $M$).\\
\hspace*{4em}Then we can write the previous equality as
\begin{equation}
\Phi \cdot m = 0
\label{eq:2.4.1}
\end{equation}
We know that
\begin{equation}
adj(\Phi) \Phi = det(\Phi) I
\label{eq:2.4.2}
\end{equation}
(aka. fundamental identity for the adjugate matrix).
So if at \eqref{eq:2.4.1} we multiply both sides by $adj(\Phi)$,
\begin{align*}
adj(\Phi) \cdot \Phi \cdot &m = 0\\
(\text{recall from \eqref{eq:2.4.2}:}~ &det(\Phi)\cdot I ~)\\
=det(\Phi) \cdot I \cdot &m = 0
\end{align*}
Thus,
\begin{align*}
det(\Phi) \cdot I \cdot &m = 0\\
\begin{pmatrix}
det(\Phi) & 0 & \ldots & 0\\
0 & det(\Phi) & \ldots & 0\\
\vdots\\
0 & 0 & \ldots & det(\Phi)
\end{pmatrix}
\cdot
&\begin{pmatrix}
x_1\\ x_2\\ \vdots\\ x_n
\end{pmatrix}
=
\begin{pmatrix}
0\\ 0\\ \vdots\\ 0
\end{pmatrix}
\end{align*}
$\Longrightarrow$
\begin{equation}
det(\Phi) \cdot x_i = 0 ~~\forall i \in [n]
\label{eq:2.4.3}
\end{equation}
ie. $det(\Phi)$ is an \emph{annihilator} of the generators $x_i$ of $M$, thus of the entire module $M$.
$\Longrightarrow~$ so we can treat the matrix as a matrix of real numbers and calculate its determinant.
We're interested in the determinant because it is the only way to turn a system of multiple equations in a single scalar-like equation that describes the endomorphism $\psi$.\\
$\rightarrow$ Because in module theory, we lack of "division", so can not "solve for $\psi$" the system of equations.\\
$\rightarrow$ The determinant provides a way to find a polynomial that \emph{annihilates} the module; the \emph{characteristic polynomial}, which related $\psi$ to the ideal $\aA$
So, we're interested into calculating the $det(\Phi)$.
$$det(M) \cdot x_i = 0~~ \forall i$$
where $x_i$ are the generators of $M$.
By the Leibniz formula,
$$\det(A) = \sum_{\sigma \in S_n} sgn(\sigma) \prod_{i=1}^n a_{i, \sigma(i)}$$
Since $det(M)$ kills every generator, it must kill every element in $M$\\
$\Longrightarrow~~ det(M)$ is the zero map.
thus,
$$det(\Phi) = \underbrace{(\psi - a_{11}) (\psi - a_{22}) \ldots (\psi - a_{nn})}_{\text{diagonal of $\Phi$, leading term of the determinant}} - \ldots$$
Leibniz formula of the determinant of an $n \times n$ matrix:
$$
det(M) = \sum_{\sigma \in S_n} sign(\sigma) \prod_{i=1}^n M_{i, \sigma(i)}
$$
so,
$$(\psi - a_{11}) (\psi - a_{22}) \ldots (\psi - a_{nn})$$
expanding it,
The \emph{determinant trick} is that the terms that go after the "leading term of the determinant", will belong to $\aA$ and their combinations with $\psi$ will not be bigger than $\psi^n$. Furthermore, when expanding it
\begin{itemize} \begin{itemize}
\item highest power is $1 \cdot \psi^n$ \item highest power is $1 \cdot \psi^n$
\item coefficient of $\psi^{n-1}$ is $-( \underbrace{ a_{11} + a_{22} + \ldots + a_{nn} }_{a_1})$,\\ \item coefficient of $\psi^{n-1}$ is $-( \underbrace{ a_{11} + a_{22} + \ldots + a_{nn} }_{a_1})$,\\
@ -373,15 +392,111 @@ $A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi
\end{itemize} \end{itemize}
So we have So we have
$$p(\psi) = \psi^n + a_1 \psi^{n-1} + a_2 \psi^{n-2} + \ldots + a_{n-1} \psi + a_n$$
$$det(\Phi) = \psi^n + a_1 \psi^{n-1} + a_2 \psi^{n-2} + \ldots + a_{n-1} \psi + a_n$$
with $a_i \in \aA$. with $a_i \in \aA$.
Since this determinant annihilates the generators (ie. $det(M)x_i=0$), the resulting enddomorphism $p(\psi)$ is the zero map on the entire module $M$, so:
\vspace{0.5cm}
Now, notice that we had $det(\Phi) \cdot x_i = 0 ~\forall~ i\in [n]$.
% next part might be removed
Since $M$ is a fingen $A$-module, any element $m \in M$ can be written as a linear combination of $M$'s generators $x_i$, ie.
$$m = r_1 x_1 + r_2 x_2 + \ldots r_n x_n \in M$$
If we multiply $m \in M$ by $d = det(\Phi)$,
\begin{align*}
d \cdot m &= d \cdot (r_1 x_1 + r_2 x_2 + \ldots r_n x_n)\\
&= r_1(d \cdot x_1) + r_2 (d \cdot x_2) + \ldots + r_n (d \cdot x_n)\\
(\text{every}~ &d \cdot x_i = det(\Phi)x_i = 0 ~\forall~ i)\\
&= r_1 (0) + \ldots + r_n (0)\\
&= 0
\end{align*}
Therefore, $det(\Phi) \cdot m = 0$.
% end of might be removed
The matrix $\Phi$ is the \emph{characteristic matrix}, $xI-A$, viewed as an operator. Then,
$$det(\Phi) = det(xI-A) = p(x)$$
where $p(x)$ is the \emph{characteristic polynomial}.
If a linear transformation turns every basis vector ($x_i$) into zero, then that transformation is the zero transformation. So in our case, $det(\Phi)$ is the zero transformation, thus $det(\Phi)=0$.
Therefore,
$$\psi^n + a_1 \psi^{n-1} + a_2 \psi^{n-2} + \ldots + a_{n-1} \psi + a_n = 0$$ $$\psi^n + a_1 \psi^{n-1} + a_2 \psi^{n-2} + \ldots + a_{n-1} \psi + a_n = 0$$
with $a_i \in \aA$, as stated in the Cayley-Hamilton theorem.
%%%%%% OLD START
% \vspace{3cm}
%
% Kronecker delta:
% $\delta_{ij} =
% \begin{cases}
% 1 & \text{if } i = j,\\
% 0 & \text{otherwise}
% \end{cases}$
%
% With the Kronecker delta, $\psi(x_i)$ can be expressed as
% $$\psi(x_i) = \sum_{j=1}^n \delta_{ij} \psi(x_j)$$
% so the previous matrix can be characterized as
% $$\sum_{j=1}^n (\delta_{ij} \psi - a_{ij}) x_j = 0$$
%
% The entries of the matrix are \emph{endomorphisms} (elements of the ring $A[\psi]$)
% \begin{itemize}
% \item the term $(\psi - a_{11})$ is an operator that acts on $x_1$; as $(\psi(x_1)-a_{11}\cdot x_1)$
% \item the term $(-a_{12})$ is an operator that acts on $x_2$; as multiplication by it, ie. $(-a_{12} \cdot x_2)$
% \end{itemize}
%
% We need a single element $x \in A$ that \emph{annihilates} every $m \in M$ simultaneously, ie. $xM=0$. We're going to use the determinant for getting $x$.
%
% Since $A$ is a commutative ring, and $\psi$ commutes with any $a \in A$,
% the ring of operators $A[\psi]$ is a commutative ring.
%
% $\Longrightarrow~$ so we can treat the matrix as a matrix of real numbers and calculate its determinant.
%
%
% \vspace{0.75cm}
% This is called \emph{"the determinant trick"}.\\
% We're interested in the determinant because it is the only way to turn a system of multiple equations in a single scalar-like equation that describes the endomorphism $\psi$.\\
% $\rightarrow$ Because in module theory, we lack of "division", so can not "solve for $\psi$" the system of equations.\\
% $\rightarrow$ The determinant provides a way to find a polynomial that \emph{annihilates} the module; the \emph{characteristic polynomial}, which related $\psi$ to the ideal $\aA$
%
% $$det(M) \cdot x_i = 0~~ \forall i$$
% where $x_i$ are the generators of $M$.
%
% Use $\Phi$ to denote the previous matrix. The determinant is the only function that can take that matrix $\Phi$ and produce a single scalar $x=det(\Phi)$ such that the following identity holds: $adj(\Phi)\cdot \Phi=det(\Phi) \cdot \aA$.
% \vspace{0.5cm}
%
% Since $det(M)$ kills every generator, it must kill every element in $M$\\
% $\Longrightarrow~~ det(M)$ is the zero map.
%
% Leibniz formula of the determinant of an $n \times n$ matrix:
% $$
% det(M) = \sum_{\sigma \in S_n} sign(\sigma) \prod_{i=1}^n M_{i, \sigma(i)}
% $$
%
% so,
% $$(\psi - a_{11}) (\psi - a_{22}) \ldots (\psi - a_{nn})$$
% expanding it,
% \begin{itemize}
% \item highest power is $1 \cdot \psi^n$
% \item coefficient of $\psi^{n-1}$ is $-( \underbrace{ a_{11} + a_{22} + \ldots + a_{nn} }_{a_1})$,\\
% where, since each $a_{ii} \in \aA,~~ a_1 \in \aA$
% \item the rest of coefficients of $\psi^k$ are also elements in $\aA$
% \end{itemize}
%
% So we have
% $$p(\psi) = \psi^n + a_1 \psi^{n-1} + a_2 \psi^{n-2} + \ldots + a_{n-1} \psi + a_n$$
% with $a_i \in \aA$.
%
% Since this determinant annihilates the generators (ie. $det(M)x_i=0$), the resulting enddomorphism $p(\psi)$ is the zero map on the entire module $M$, so:
% $$\psi^n + a_1 \psi^{n-1} + a_2 \psi^{n-2} + \ldots + a_{n-1} \psi + a_n = 0$$
% with $a_i \in \aA$, as stated in the Cayley-Hamilton theorem.
%%%%% OLD END
\end{proof} \end{proof}
\vspace{0.5cm}
\begin{cor}{AM.2.5} \label{2.5} \begin{cor}{AM.2.5} \label{2.5}
Let $M$ a fingen $A$-module, let $\aA$ an ideal of $A$ such that $\aA M = M$. Let $M$ a fingen $A$-module, let $\aA$ an ideal of $A$ such that $\aA M = M$.
@ -466,7 +581,7 @@ $A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi
$$\frac{\aA M + N}{N} = \left\{ y + N ~~|~~ y \in \aA M +N \right\} = \aA M + N$$ $$\frac{\aA M + N}{N} = \left\{ y + N ~~|~~ y \in \aA M +N \right\} = \aA M + N$$
thus every $y \in \aA M +N$ can be written as thus every $y \in \aA M +N$ can be written as
$$y=x+n,~~ \text{with} x \in \aA M,~ n\in N$$
$$y=x+n,~~ \text{with}~ x \in \aA M,~ n\in N$$
which comes from \eqref{eq:2.7.1}. which comes from \eqref{eq:2.7.1}.
Thus, $y + N = (x+n)+N = x+N$, since $n \in N$ is zero in the quotient. Thus, $y + N = (x+n)+N = x+N$, since $n \in N$ is zero in the quotient.
@ -524,7 +639,7 @@ $A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi
Split exact sequence. TODO Split exact sequence. TODO
\end{prop} \end{prop}
\section{Noetherean rings}
\section{Noetherian rings}
\begin{defn}{}{Ascending Chain Condition} \begin{defn}{}{Ascending Chain Condition}
A partially orddered set $\Sigma$ has the \emph{ascending chain condition} (a.c.c.) if every chain A partially orddered set $\Sigma$ has the \emph{ascending chain condition} (a.c.c.) if every chain

Loading…
Cancel
Save