diff --git a/.github/workflows/typos.toml b/.github/workflows/typos.toml index bee3b93..0455301 100644 --- a/.github/workflows/typos.toml +++ b/.github/workflows/typos.toml @@ -3,6 +3,7 @@ # run: typos -c .github/workflows/typos.toml [default.extend-words] +ieal = "ideal" iddeal = "ideal" iddeals = "ideals" allpha = "alpha" diff --git a/commutative-algebra-notes.pdf b/commutative-algebra-notes.pdf index 24fa6af..499f599 100644 Binary files a/commutative-algebra-notes.pdf and b/commutative-algebra-notes.pdf differ diff --git a/commutative-algebra-notes.tex b/commutative-algebra-notes.tex index f83804c..60eb50b 100644 --- a/commutative-algebra-notes.tex +++ b/commutative-algebra-notes.tex @@ -1486,6 +1486,17 @@ Note: for $k$ a field, $k[X_1, \ldots, X_n]$, $m$ maximal ideal; the residue fie If $J \subseteq m'$, then $\forall~ f \in J$ must vanish at $P$. By definition, the set of points where all polynomials in $J$ vanish is the \emph{variety}, $V(J)$. + + \vspace{0.4cm} + Thus,\\ + every maximal ideal in $A$ corresponds to a point $(a_1, \ldots, a_n) \in k^n$, ie. + $$m-Spec A \longleftrightarrow k^n$$ + + The condition that the ideal belongs to the quotient ring $A=k[X_1, \ldots, X_n]/J$ forces that point to lie in $V(J)$, so + \begin{align*} + m-Spec A &\longleftrightarrow V(J)\\ + \text{maximal spectrum} &\longleftrightarrow \text{variety} + \end{align*} \end{proof} \begin{prop}{5.5}[Correspondeces $V$ and $I$] \label{5.5}