mirror of
https://github.com/arnaucube/math.git
synced 2026-02-20 18:06:40 +01:00
add exercises 6.3, 6.4
This commit is contained in:
Binary file not shown.
@@ -2531,6 +2531,148 @@ $$\{ 1, X \} \times \{ 1,Y, Y^2 \} = \{ 1, Y, Y^2, X, XY, XY^2 \}$$
|
|||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Exercises Chapter 6}
|
||||||
|
|
||||||
|
\begin{ex}{R.6.3.a}
|
||||||
|
Let $A = A' \times A''$; prove that $A'$ and $A''$ are rings of fractions of $A$.
|
||||||
|
\end{ex}
|
||||||
|
\begin{proof}
|
||||||
|
ring of fractions of $A$ = $S^{-1}A$, so want to prove that $S^{-1}A \cong A'$.
|
||||||
|
|
||||||
|
Localization map
|
||||||
|
\begin{align*}
|
||||||
|
\psi: A &\longrightarrow A'\\
|
||||||
|
(a', a'') &\longmapsto a'
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
note that $\psi$ is surjective, since $\forall~ a' \in A',~ \psi(a', 0)=a'$.
|
||||||
|
|
||||||
|
Let the multiplicative set $S$ be $S=\{ e_1 \}$ with $e_1 = (1,0)$.
|
||||||
|
|
||||||
|
Want $\underbrace{S^{-1}A}_{\text{localization}} \cong A'$.
|
||||||
|
|
||||||
|
In $S^{-1}A$, $x \in A$ maps to $0$ iff $s x = 0$ for some $s \in S$.
|
||||||
|
|
||||||
|
Let $x=(a', a'')\in A$; then $sx=0 ~\Longrightarrow~ s \cdot (a', a'') =0$,
|
||||||
|
|
||||||
|
with $s \in S$, so $s=(1,0)$, hence
|
||||||
|
$$(1,0)\cdot(a',a'')=(0,0)$$
|
||||||
|
$$\Longrightarrow~ (a', 0) = (0, 0)$$
|
||||||
|
\hspace*{4em} which implies $a' = 0$.
|
||||||
|
|
||||||
|
$\Longrightarrow$ the elements that become zero in the localization are of the form $(0, a'')$
|
||||||
|
|
||||||
|
$$ker(\psi) = \{ (a',a'')\in A ~|~ \psi(a', a'')=0 \} = \{(0, a'') ~|~ a'' \in A'' \}$$
|
||||||
|
|
||||||
|
By the 1st isomorphism theorem,
|
||||||
|
|
||||||
|
\begin{tikzpicture}[node distance=1.5cm, auto]
|
||||||
|
\node (G) {$A$};
|
||||||
|
\node (H) [right of=G] {$A'$};
|
||||||
|
\node (GmodK) [below of=G, xshift=0.75cm] {$\frac{A}{ker(\psi)}$};
|
||||||
|
|
||||||
|
\draw[->] (G) to node {$\psi$} (H);
|
||||||
|
\draw[->] (G) to node [swap] {$\phi$} (GmodK);
|
||||||
|
\draw[<->] (GmodK) to node [swap] {$\eta$} (H);
|
||||||
|
\end{tikzpicture}
|
||||||
|
|
||||||
|
$\Longrightarrow~ \frac{A}{ker(\psi)} \cong A'$
|
||||||
|
|
||||||
|
|
||||||
|
\vspace{0.5cm}
|
||||||
|
Take the localization map
|
||||||
|
\begin{align*}
|
||||||
|
\phi: A &\longrightarrow S^{-1}A\\
|
||||||
|
a &\longmapsto a/1
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
$$ker(\phi) = \{ x \in A ~|~ sx=0 ~\text{for some}~ s \in S \}$$
|
||||||
|
|
||||||
|
and we've seen that $a'=0$, so $x \in A ~\Rightarrow~ x=(a', a'') = (0, a'')$
|
||||||
|
|
||||||
|
$$ker(\phi) = \{ (0, a'') ~|~ a'' \in A'' \}$$
|
||||||
|
|
||||||
|
which is the same as $ker(\psi)$; $ker(\psi) = ker(\phi)$.
|
||||||
|
|
||||||
|
\vspace{0.2cm}
|
||||||
|
$\Longrightarrow~~ A'$ and $S^{-1}A$ are both surjective images of $A$ with exact same kernel,
|
||||||
|
thus $A' \cong S^{-1}A$.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\begin{ex}{R.6.4}
|
||||||
|
\begin{enumerate}[a.]
|
||||||
|
\item Give an example of a ring $A$ and distinct multiplicative sets $S,~ T$ such that $S^{-1}A = T^{-1}A$.
|
||||||
|
\item Prove that for fixed $S$, there is a maximal multiplicative set $T$ with this property defined by
|
||||||
|
$$T = \{ t \in A ~|~ at \in S ~\text{for some}~ a \in A \}$$
|
||||||
|
\end{enumerate}
|
||||||
|
\end{ex}
|
||||||
|
\begin{proof}
|
||||||
|
\begin{enumerate}[a.]
|
||||||
|
\item
|
||||||
|
(\emph{saturated sets})\\
|
||||||
|
|
||||||
|
General rule of saturation:\\
|
||||||
|
two multiplicative sets $S,~T$ yield the same localization, $S^{-1}A = T^{-1}A$, iff the have the same saturation.
|
||||||
|
|
||||||
|
Saturation of $S$: $\hat{S}$, set of all elements in $A$ that divide some element of $S$:
|
||||||
|
$$\hat{S} = \{ a \in A ~|~ \exist~ b \in A ~\text{s.th.}~ ab \in S \}$$
|
||||||
|
|
||||||
|
\vspace{0.4cm}
|
||||||
|
Example 1: $A=\mathbb{Z}$,\\
|
||||||
|
|
||||||
|
$$S = \{ 2^n ~|~ n \geq 0 \} = \{ 1, 2, 4, 8, 16, \ldots \}$$
|
||||||
|
localization:
|
||||||
|
$$S^{-1} \mathbb{Z} = \{ \frac{a}{2^n} ~|~ a \in \mathbb{Z},~ n \in \mathbb{N} \}$$
|
||||||
|
|
||||||
|
$$T = \{ \pm 1, \pm 2, \pm 4, \pm 8, \pm 16, \ldots \}$$
|
||||||
|
|
||||||
|
Notice that despite $S \neq T$, we have $S^{-1}\mathbb{Z} = T^{-1} \mathbb{Z}$,\\
|
||||||
|
since once $n \in \mathbb{Z}$ is invertible, $-n$ is automatically invertible: $(-n)^{-1} = - (n^{-1})$.
|
||||||
|
|
||||||
|
\vspace{0.4cm}
|
||||||
|
Example 2: $A= k[x]$,
|
||||||
|
$$S = \{ x^n ~|~ n \geq 0 \}$$
|
||||||
|
$$T = \{ (2x)^n ~|~ n \geq 0 \}$$
|
||||||
|
$$\Longrightarrow~ S^{-1}A = T^{-1} A = k[x, x^{-1}]$$
|
||||||
|
|
||||||
|
\item
|
||||||
|
Show that $T$ is a multiplicative set:
|
||||||
|
|
||||||
|
(must contain $1$ and be closed under multiplication)\\
|
||||||
|
Since $1 \in A$ and $1 \cdot 1 = 1 \in S$, then $1 \in T$.
|
||||||
|
|
||||||
|
Let $t_1,~ t_2 \in T$; by definition of $T$,
|
||||||
|
$$\exists~ a_1, a_2 \in A ~\text{such that}~ a_1 t_1,~ a_2 t_2 \in S$$
|
||||||
|
|
||||||
|
Since $S$ a multiplicative set, $(a_1 t_1)(a_2 t_2) \in S$\\
|
||||||
|
rearrange it: $(a_1 a_2)(t_1 t_2) \in S$.\\
|
||||||
|
Since $a_1 a_2 \in A,~~ t_1 t_2 \in T$.
|
||||||
|
|
||||||
|
Thus $T$ is a multiplicative set.
|
||||||
|
|
||||||
|
Next, we show that $T$ is maximal:
|
||||||
|
|
||||||
|
Suppose $U$ is the maximal instead of $T$, such that $U^{-1}A \cong S^{-1}A$.
|
||||||
|
|
||||||
|
Let $u \in U$; the image of $u$ in $S^{-1}A$ must be a unit.
|
||||||
|
|
||||||
|
Units in $S^{-1}A$ are the fractions $\frac{s}{a}$ such that their inverse exists.\\
|
||||||
|
\hspace*{2em} $\exist~ x=\frac{a}{s}$ such that $u \frac{a}{s} = \frac{1}{1}$\\
|
||||||
|
\hspace*{2em} $\Longrightarrow~ \frac{ua}{s} = \frac{1}{1} ~\Longrightarrow~ \exist s' \in S$ such that $s'(ua-s)=0$\\
|
||||||
|
$\Longrightarrow~ s'ua=s's \in S$
|
||||||
|
|
||||||
|
since $s,s' \in S$, their product is also in $S$.
|
||||||
|
|
||||||
|
Let $b=s'a$, then $ub \in S$.
|
||||||
|
|
||||||
|
By definition of $T$, $u \in T$.
|
||||||
|
|
||||||
|
Therefore, $U \subseteq T$; thus $T$ is maximal.
|
||||||
|
\end{enumerate}
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
|
||||||
\bibliographystyle{unsrt}
|
\bibliographystyle{unsrt}
|
||||||
\bibliography{commutative-algebra-notes.bib}
|
\bibliography{commutative-algebra-notes.bib}
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user