Browse Source

add proof for split exact sequences

comm-alg
arnaucube 6 days ago
parent
commit
8eafa372a2
2 changed files with 105 additions and 2 deletions
  1. BIN
      commutative-algebra-notes.pdf
  2. +105
    -2
      commutative-algebra-notes.tex

BIN
commutative-algebra-notes.pdf


+ 105
- 2
commutative-algebra-notes.tex

@ -696,9 +696,112 @@ $A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi
\end{proof} \end{proof}
\begin{prop}{AM.2.10} \label{2.10}
Split exact sequence. TODO
\begin{defn}{R.2.9.a}{Exact Sequence}
Let a sequence of homomorphisms
$$L \stackrel{\alpha}{\longrightarrow} M \stackrel{\beta}{\longrightarrow} N$$
It is \emph{exact} at $M$ if $im(\alpha)=ker(\beta)$.
ie. $\beta \circ \alpha = 0$ and $\alpha$ maps surjectively to
$ker(\beta)$.
\end{defn}
\begin{defn}{R.2.9.b}{Short Exact Sequence (s.e.s.)} \label{2.9}
$$0 \longrightarrow L \stackrel{\alpha}{\longrightarrow} M \stackrel{\beta}{\longrightarrow} N \longrightarrow 0$$
is exact $\Longleftrightarrow~ L \subset M$ and $N=M / L$.
\end{defn}
\begin{prop}{R.2.10}{Split exact sequence} \label{2.10}
For the previous s.e.s., 3 equivalent conditions:
\begin{enumerate}[i.]
\item $\exists$ isomorphism $M \cong L \oplus N$, with
\begin{align*}
\alpha:~ &m \longmapsto (m,0)\\
\beta:~ &(m, n) \longmapsto n
\end{align*}
\item $\exists$ a \emph{section} of $\beta$, that is, a map $s: N \longrightarrow M$ such that $\beta \circ s = id_N$
\item $\exists$ a \emph{retraction} of $\alpha$, that is, a map $r: M \longrightarrow L$ such that $r \circ \allpha = id_L$
\end{enumerate}
If all i, ii, iii are satisfied, it is a split exact sequence.
\end{prop} \end{prop}
\begin{proof}
Intuitively, when a s.e.s. \emph{splits} it means that the middle module $M$ is the direct sum of the other (outter) two modules, ie. $M = L \oplus N$.
\begin{itemize}
\item[(i \Longrightarrow ii, iii)]
if $M \cong L \oplus N$ such that $\alpha:~ m \longmapsto (m,0),~~ \beta:~ s(m, n) \longmapsto n$, we can define the maps
for ii:
\begin{align*}
s:~ N &\longrightarrow L \oplus N\\
s(n) &\longmapsto (0, n)
\end{align*}
Then $\beta(s(n))=\beta(0,n)$, so $\beta \circ s = id_N$.
for iii:
\begin{align*}
r:~ L \oplus N &\longrightarrow L\\
r(m,n) &\longmapsto m
\end{align*}
Then $r(\alpha(m))=r(m,0)$, so $r \circ \alpha = id_L$.
\item[(ii \Longrightarrow i)]
assume $s: N \longrightarrow M$ such that $\beta \circ s = id_M$
Want to show $M \cong im(\alpha) \oplus im(s)$.
$\forall m \in M$, consider $m - s(\beta(m))$, apply $\beta$ to it:\\
$\beta(m - s(\beta(m))) = \beta(m) - (\beta \circ s)(\beta(m)) = \beta(m) - \beta(m) = 0$
Since $ker(\beta) = im(\alpha),~~ \exists! l \in L ~\text{such that}~ \alpha(l) = m - s(\beta(m))$.
Thus $m = \alpha(l) + s(\beta(m))$.
\vspace{0.3cm}
Now, suppose $x \in im(\alpha) \cap im(s)$, then $x = \alpha(l)=s(n)$, apply $\beta$ to it: $\beta(\alpha(l)) = \beta(s(n)) ~\Longrightarrow~ 0=n$.
If $n=0$, then $s(n)=0$, so the intersection is $\{0\}$.
\vspace{0.3cm}
Define
\begin{align*}
\phi: L \oplus N &\longrightarrow M\\
\phi(l,n) &\longmapsto \alpha(l)+s(n)
\end{align*}
This isomorphism satisfies the required conditions.
\item[(iii \Longrightarrow i)] similar to the previous one.
\end{itemize}
\vspace{0.3cm}
TL;DR:\\
$$
0 \longrightarrow L
\substack{
\stackrel{\alpha}{\longrightarrow}\\
\stackrel{\longleftarrow}{r}
}
\substack{M \\[0.5ex] \cong L \oplus N}
\substack{
\stackrel{\beta}{\longrightarrow}\\
\stackrel{\longleftarrow}{s}
}
N \longrightarrow 0
$$
\begin{align*}
\alpha:~ &l \longmapsto (l,0)\\
r:~ &(m,n) \longmapsto m\\
\alpha &\circ r = id_L\\
\beta:~ &(l,n) \longmapsto n\\
s:~ &n \longmapsto (0,n)\\
\beta &\circ s = id_N
\end{align*}
\end{proof}
\section{Noetherian rings} \section{Noetherian rings}

Loading…
Cancel
Save