diff --git a/.github/workflows/typos.toml b/.github/workflows/typos.toml new file mode 100644 index 0000000..19ff2b7 --- /dev/null +++ b/.github/workflows/typos.toml @@ -0,0 +1,10 @@ +[default.extend-words] +thm = "thm" + +# equations stuff +ba = "ba" +nd = "nd" + +# names +Strang = "Strang" +Bootle = "Bootle" diff --git a/.github/workflows/typos.yml b/.github/workflows/typos.yml new file mode 100644 index 0000000..de7bc65 --- /dev/null +++ b/.github/workflows/typos.yml @@ -0,0 +1,21 @@ +name: typos +on: + pull_request: + branches: [ main ] + types: [ready_for_review, opened, synchronize, reopened] + push: + branches: + - main + +jobs: + typos: + if: github.event.pull_request.draft == false + name: Spell Check with Typos + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v4 + - name: Use typos with config file + uses: crate-ci/typos@master + with: + config: .github/workflows/typos.toml + diff --git a/.gitignore b/.gitignore index 552c4ca..d45d44d 100644 --- a/.gitignore +++ b/.gitignore @@ -12,3 +12,4 @@ *.snm *.vrb galois-theory-notes.bib +commutative-algebra-notes.bib diff --git a/README.md b/README.md index bc33bcd..e383c72 100644 --- a/README.md +++ b/README.md @@ -7,6 +7,7 @@ Notes, code and documents done while reading books and papers. - [Notes on "Abstract Algebra" book, by Charles C. Pinter](abstract-algebra-charles-pinter-notes.pdf) - [Notes on Weil pairing](weil-pairing.pdf) - [Notes on Galois Theory](galois-theory-notes.pdf) +- [Notes on Commutative Algebra](commutative-algebra-notes.pdf) In-between math & crypto: diff --git a/commutative-algebra-notes.pdf b/commutative-algebra-notes.pdf new file mode 100644 index 0000000..23403c0 Binary files /dev/null and b/commutative-algebra-notes.pdf differ diff --git a/commutative-algebra-notes.tex b/commutative-algebra-notes.tex new file mode 100644 index 0000000..846f7de --- /dev/null +++ b/commutative-algebra-notes.tex @@ -0,0 +1,1007 @@ +\documentclass{article} +\usepackage[utf8]{inputenc} +\usepackage{amsfonts} +% \usepackage{yfonts} % WIP +\usepackage{amsthm} +\usepackage{amsmath} +\usepackage{enumerate} +\usepackage{hyperref} +\usepackage{amssymb} +\usepackage{tikz} % diagram + +\begin{filecontents}[overwrite]{commutative-algebra-notes.bib} +@misc{am, + author = {M. F. Atiyah and I. G. MacDonald}, + title = {{Introduction to Commutative Algebra}}, + year = {1969} +} +@misc{reid, + author = {Miles Reid}, + title = {{Undergraduate Commutative Algebra}}, + year = {1995} +} +@misc{mit-course, + author = {Steven Kleiman}, + title = {{Commutative Algebra - MIT OpenCourseWare}}, + year = {2008}, + note = {\url{https://ocw.mit.edu/courses/18-705-commutative-algebra-fall-2008/}}, + url = {https://ocw.mit.edu/courses/18-705-commutative-algebra-fall-2008/} +} +\end{filecontents} +\nocite{*} + + +\theoremstyle{definition} + +\newtheorem{innerdefn}{Definition} +\newenvironment{defn}[1] +{\renewcommand\theinnerdefn{#1}\innerdefn} +{\endinnerdefn} + +\newtheorem{innerthm}{Theorem} +\newenvironment{thm}[1] +{\renewcommand\theinnerthm{#1}\innerthm} +{\endinnerthm} + +\newtheorem{innerlemma}{Lemma} +\newenvironment{lemma}[1] +{\renewcommand\theinnerlemma{#1}\innerlemma} +{\endinnerlemma} + +\newtheorem{innerprop}{Proposition} +\newenvironment{prop}[1] +{\renewcommand\theinnerprop{#1}\innerprop} +{\endinnerprop} + +\newtheorem{innercor}{Corollary} +\newenvironment{cor}[1] +{\renewcommand\theinnercor{#1}\innercor} +{\endinnercor} + +\newtheorem{innereg}{Example} +\newenvironment{eg}[1] +{\renewcommand\theinnereg{#1}\innereg} +{\endinnereg} + +\newtheorem{innerex}{Exercise} +\newenvironment{ex}[1] +{\renewcommand\theinnerex{#1}\innerex} +{\endinnerex} + +\newcommand{\aA}{\mathfrak{a}} % TODO: use goth font +\newcommand{\mM}{\mathfrak{m}} + +\title{Commutative Algebra notes} +\author{arnaucube} +\date{} + +\begin{document} + +\maketitle + +\begin{abstract} + Notes taken while studying Commutative Algebra, mostly from Atiyah \& MacDonald book \cite{am} and Reid's book \cite{reid}. + + Usually while reading books and papers I take handwritten notes in a notebook, this document contains some of them re-written to $LaTeX$. + + The proofs may slightly differ from the ones from the books, since I try to extend them for a deeper understanding. +\end{abstract} + +\tableofcontents + +\section{Ideals} + +\subsection{Definitions} + +\begin{defn}{ideal} + $I \subset R$ ($R$ ring) such that $0 \in I$ and $\forall x \in I,~ r \in R,~ xr, rx \in I$.\\ + \hspace*{2em} ie. $I$ absorbs products in $R$. +\end{defn} + +\begin{defn}{prime ideal} + if $a, b \in R$ with $ab \in P$ and $P \neq R$ ($P$ a prime ideal), implies $a in P$ or $b \in P$. +\end{defn} + +\begin{defn}{principal ideal} + generated by a single element, $(a)$. + + $(a)$: principal ideal, the set of all multiples $xa$ with $x \in R$. +\end{defn} + +\begin{defn}{maximal ideal} + $\mM \subset A$ ($A$ ring) with $m \neq A$ and there is no ideal $I$ strictly between $\mM$ and $A$. ie. if $\mM$ maximal and $\mM \subseteq I \subseteq A$, either $\mM=I$ or $I=A$. +\end{defn} + + +\begin{defn}{unit} + $x \in A$ such that $xy=1$ for some $y \in A$. ie. element \emph{which divides 1}. +\end{defn} + +\begin{defn}{zerodivisor} + $x \in A$ such that $\exists 0 \neq y \in A$ such that $xy=0 \in A$. ie. $x$ \emph{divides 0}.. + + + If a ring does not have zerodivisors is an integral domain. +\end{defn} + +\begin{defn}{prime spectrum - $Spec(A)$} + set of prime ideals of $A$. ie. + + $$Spec(A) = \{ P ~|~ P \subset A~ \text{is a prime ideal} \}$$ +\end{defn} + +\begin{defn}{integral domain} + Ring in which the product of any two nonzero elements is nonzero. + + ie. no zerodivisors. + + ie. $\forall~ 0 \neq a,~ 0 \neq b \in A,~ ab \neq 0 \in A$. + + Every field is an integral domain, not the converse. +\end{defn} + +\begin{defn}{principal ideal domain - PID} + integral domain in which every ideal is principal. ie. + ie. $\forall I \subset R,~ \exists~ a \in I$ such that $I = (a) = \{ ra ~|~ r \in R \}$. +\end{defn} + +\begin{defn}{nilpotent} + $a \in A$ such that $a^n=0$ for some $n>0$. +\end{defn} +\begin{defn}{nilrad A} + set of all nilpotent elements of $A$; is an ideal of $A$. + + if $nilrad A = 0 ~\Longrightarrow$ $A$ has no nonzero nilpotents. + + + $$nilrad A = \bigcap_{P \in Spec(A)} P$$ +\end{defn} + +\begin{defn}{idempotent} + $e \in A$ such that $e^2=e$. +\end{defn} + +\begin{defn}{radical of an ideal} + $$rad I = \{ f \in A | f^n \in I~ \text{for some} n \}$$ + + $rad I$ is an ideal. + + $nilrad A = rad 0$ + + $rad I = \bigcap_{\substack{P \in \operatorname{Spec}(A)\\ P \supset I}} P$ +\end{defn} + +\begin{defn}{local ring} + A \emph{local ring} has a unique maximal ideal. + + Notation: local ring $A$, its maximal ideal $\mM$, residue field $K=A/\mM$: + $$A \supset \mM ~\text{or}~ (A, \mM) ~\text{or}~ (A, \mM, K)$$ +\end{defn} + +\subsection{$\mathbb{Z}$ and $K[X]$, two Principal Ideal Domains} + + +\begin{lemma}{} + $\mathbb{Z}$ is a PID. +\end{lemma} +\begin{proof} + Let $I$ a nonzero ideal of $\mathbb{Z}$. + + Since $I \neq \{0\}$, there is at least one nonzero integer in $I$. Choose the smallest element of $I$, namely $d$. + + Observe that $(d) \subseteq I$, since $d \in I$. Then, every multiple $nd \in I$, since $I$ is an ideal. + + Take $a \in I$. By the Euclidean division algorithm in $\mathbb{Z}$, $a=qd+r$, with $q,r \in \mathbb{Z}$ and $0 \leq r \leq d$. + + Then $r = a - qd \in I$, but $d$ was chosen to be the smallest positive element of $I$, so the only possibility is $r=0$. + + Hence, $a=qd$, so $a \in (d)$, giving $I \subseteq (d)$. + + Since we had $(d) \subseteq I$ and now we got $I \subseteq (d)$, we have $I = (d)$, so every ideal of $\mathbb{Z}$ is principal. Thus $\mathbb{Z}$ is a Principal Ideal Domain(PID). +\end{proof} + +\begin{lemma}{} + $K[X]$ is a PID. +\end{lemma} +\begin{proof} + This proof follows very similarly to the previous proof.\\ + + Let $K$ be a field, $K[X]$ a polynomial ring. + + Take $\{0\} \neq I \subseteq K[X]$. + + Since $I \neq \{0\}$, there is at least one non-zero polynomial in $I$. + + Let $p(X) \in I$ be of minimal degree among nonzero elements of $I$. + + Observe that $(p(X)) \subseteq I$, because $p(X) \in I$ and $I$ is an ideal. + + Let $f(X) \in I$. By Euclidean division algorithm in $K[X]$, $\exists q, r \in K[X]$ such that $f(X) = q(X) \cdot p(X) + r(X)$ with eithr $r(X)=0$ or $deg(r) < deg(p)$. + + Since $f,p \in I$, then $r(X) = f(X) - q(X)\cdot p(X) \in I$ + + If $r(X) \neq 0$, then $deg(r) < deg(p)$, which contradicts the minimality of $deg(p)$ in $I$. + + Therefore, $r(X)=0$, thus $f(X)=q(X)\cdot p(X)$, hence $f(X) \in (p(X))$. + Henceforth, $I \subseteq (p(X))$. + + Then, since $(p(X)) \subseteq I$ and $I \subseteq (p(X))$, we have that $I = (p(X))$. + + So every ideal of $K[X]$ is principal; thus $K[X]$ is a PID. + +\end{proof} + + + +\subsection{Lemmas, propositions and corollaries} + +Let $\Sigma$ be a partially orddered set. Given subset $S \subset \Sigma$, an \emph{upper bound} of $S$ is an element $u \in \Sigma$ such that $s 0$?\\ + \item does the maximum occur at a point where $Df > 0$?\\ No, because if $Df > 0$, then $f$ is increasing, but it can not increase since we're at its maximum point. - \item does the maximum occour at a point where $Df < 0$?\\ + \item does the maximum occur at a point where $Df < 0$?\\ No, because if $Df < 0$, then $f$ is deccreasing, which means that at our left it was larger, but we're at a maximum point, so a contradiction. \end{enumerate} Same with minimus.\\ diff --git a/notes_fri_stir.pdf b/notes_fri_stir.pdf index 4f16693..4eb5c83 100644 Binary files a/notes_fri_stir.pdf and b/notes_fri_stir.pdf differ diff --git a/notes_fri_stir.tex b/notes_fri_stir.tex index 6baf16c..e729985 100644 --- a/notes_fri_stir.tex +++ b/notes_fri_stir.tex @@ -76,7 +76,7 @@ Consider the following protocol: \end{enumerate} %/// TODO tabulate this next lines -With high probablility, $\alpha$ will not cancel the coeffs with $deg \geq d+1$. % TODO check which is the name of this theorem or why this is true +With high probability, $\alpha$ will not cancel the coeffs with $deg \geq d+1$. % TODO check which is the name of this theorem or why this is true Let $g(x)=a \cdot x^{d+1}, ~~ h(x)=b \cdot x^{d+1}$, and set $f(x) = g(x) + \alpha h(x)$. Imagine that P can chose $\alpha$ such that $a x^{d+1} + \alpha \cdot b x^{d+1} = 0$, then, in $f(x)$ the coefficients of degree $d+1$ would cancel. @@ -314,14 +314,15 @@ $$g(z) = (f(z)-f(r))\cdot (z-r)^{-1}$$ \section{STIR (main idea)} -\emph{Update from 2024-03-22, notes from Héctor Masip Ardevol (\href{https://hecmas.github.io/}{https://hecmas.github.io}) explanations.} +\emph{Update from 2024-03-22, notes from Héctor Masip Ardevol\\ +(\href{https://hecmas.github.io/}{https://hecmas.github.io}) explanations.} \vspace{0.3cm} Let $p \in \mathbb{F}[x]^{