Browse Source

Update bls12-381.sage interface to unexpose params to avoid var name collisions when using it

master
arnaucube 2 years ago
parent
commit
9c03a71a8c
2 changed files with 45 additions and 41 deletions
  1. +5
    -5
      bls-sigs.sage
  2. +40
    -36
      bls12-381.sage

+ 5
- 5
bls-sigs.sage

@ -10,15 +10,15 @@ def hash(m):
def hash_to_point(m):
# WARNING this hash-to-point approach should not be used!
h = hash(m)
return G2 * h
return e.G2 * h
pairing = Pairing()
e = Pairing()
class Signer:
def __init__(self):
self.sk = F1.random_element()
self.pk = self.sk * G1
self.sk = e.F1.random_element()
self.pk = self.sk * e.G1
def sign(self, m):
H = hash_to_point(m)
@ -26,7 +26,7 @@ class Signer:
def verify(pk, s, m):
H = hash_to_point(m)
return pairing.pair(G1, s) == pairing.pair(pk, H)
return e.pair(e.G1, s) == e.pair(pk, H)
def aggr(points):
R = 0

+ 40
- 36
bls12-381.sage

@ -3,61 +3,65 @@
#
# ## Example of usage:
# load("bls12-381.sage")
# pairing = Pairing()
# assert pairing.pair(G1 * 3, G2 * 2) == pairing.pair(G1, G2)^6
# e = Pairing()
# assert e.pair(e.G1 * 3, e.G2 * 2) == e.pair(e.G1, e.G2)^6
class Pairing():
def __init__(self):
# BLS12-381 Parameters
# https://github.com/zkcrypto/bls12_381
self.p = 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab
self.r = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001
self.h1 = 0x396c8c005555e1568c00aaab0000aaab
self.h2 = 0x5d543a95414e7f1091d50792876a202cd91de4547085abaa68a205b2e5a7ddfa628f1cb4d9e82ef21537e293a6691ae1616ec6e786f0c70cf1c38e31c7238e5
# BLS12-381 Parameters
# https://github.com/zkcrypto/bls12_381
p = 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab
r = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001
h1 = 0x396c8c005555e1568c00aaab0000aaab
h2 = 0x5d543a95414e7f1091d50792876a202cd91de4547085abaa68a205b2e5a7ddfa628f1cb4d9e82ef21537e293a6691ae1616ec6e786f0c70cf1c38e31c7238e5
# Define base fields
F1 = GF(p)
F2.<u> = GF(p^2, x, x^2 + 1)
F12.<w> = GF(p^12, x, x^12 - 2*x^6 + 2)
# Define base fields
self.F1 = GF(self.p)
F2.<u> = GF(self.p^2, x, x^2 + 1)
self.u = u
self.F2 = F2
F12.<w> = GF(self.p^12, x, x^12 - 2*x^6 + 2)
self.w = w
self.F12 = F12
# Define the Elliptic Curves
E1 = EllipticCurve(F1, [0, 4])
E2 = EllipticCurve(F2, [0, 4*(1 + u)])
E12 = EllipticCurve(F12, [0, 4])
# Define the Elliptic Curves
self.E1 = EllipticCurve(self.F1, [0, 4])
self.E2 = EllipticCurve(F2, [0, 4*(1 + self.u)])
self.E12 = EllipticCurve(F12, [0, 4])
# Generator of order r in E1 / F1
G1x = 0x17f1d3a73197d7942695638c4fa9ac0fc3688c4f9774b905a14e3a3f171bac586c55e83ff97a1aeffb3af00adb22c6bb
G1y = 0x8b3f481e3aaa0f1a09e30ed741d8ae4fcf5e095d5d00af600db18cb2c04b3edd03cc744a2888ae40caa232946c5e7e1
G1 = E1(G1x, G1y)
# Generator of order r in E1 / F1
G1x = 0x17f1d3a73197d7942695638c4fa9ac0fc3688c4f9774b905a14e3a3f171bac586c55e83ff97a1aeffb3af00adb22c6bb
G1y = 0x8b3f481e3aaa0f1a09e30ed741d8ae4fcf5e095d5d00af600db18cb2c04b3edd03cc744a2888ae40caa232946c5e7e1
self.G1 = self.E1(G1x, G1y)
# Generator of order r in E2 / F2
G2x0 = 0x24aa2b2f08f0a91260805272dc51051c6e47ad4fa403b02b4510b647ae3d1770bac0326a805bbefd48056c8c121bdb8
G2x1 = 0x13e02b6052719f607dacd3a088274f65596bd0d09920b61ab5da61bbdc7f5049334cf11213945d57e5ac7d055d042b7e
G2y0 = 0xce5d527727d6e118cc9cdc6da2e351aadfd9baa8cbdd3a76d429a695160d12c923ac9cc3baca289e193548608b82801
G2y1 = 0x606c4a02ea734cc32acd2b02bc28b99cb3e287e85a763af267492ab572e99ab3f370d275cec1da1aaa9075ff05f79be
G2 = E2(G2x0 + u*G2x1, G2y0 + u*G2y1)
# Generator of order r in E2 / F2
G2x0 = 0x24aa2b2f08f0a91260805272dc51051c6e47ad4fa403b02b4510b647ae3d1770bac0326a805bbefd48056c8c121bdb8
G2x1 = 0x13e02b6052719f607dacd3a088274f65596bd0d09920b61ab5da61bbdc7f5049334cf11213945d57e5ac7d055d042b7e
G2y0 = 0xce5d527727d6e118cc9cdc6da2e351aadfd9baa8cbdd3a76d429a695160d12c923ac9cc3baca289e193548608b82801
G2y1 = 0x606c4a02ea734cc32acd2b02bc28b99cb3e287e85a763af267492ab572e99ab3f370d275cec1da1aaa9075ff05f79be
self.G2 = self.E2(G2x0 + self.u*G2x1, G2y0 + self.u*G2y1)
class Pairing():
def lift_E1_to_E12(self, P):
"""
Lift point on E/F_q to E/F_{q^12} using the natural lift
"""
assert P.curve() == E1, "Attempting to lift a point from the wrong curve."
return E12(P)
assert P.curve() == self.E1, "Attempting to lift a point from the wrong curve."
return self.E12(P)
def lift_E2_to_E12(self, P):
"""
Lift point on E/F_{q^2} to E/F_{q_12} through the sextic twist
"""
assert P.curve() == E2, "Attempting to lift a point from the wrong curve."
xs, ys = [c.polynomial().coefficients() for c in (h2*P).xy()]
nx = F12(xs[0] - xs[1] + w ^ 6*xs[1])
ny = F12(ys[0] - ys[1] + w ^ 6*ys[1])
return E12(nx / (w ^ 2), ny / (w ^ 3))
assert P.curve() == self.E2, "Attempting to lift a point from the wrong curve."
xs, ys = [c.polynomial().coefficients() for c in (self.h2*P).xy()]
nx = self.F12(xs[0] - xs[1] + self.w ^ 6*xs[1])
ny = self.F12(ys[0] - ys[1] + self.w ^ 6*ys[1])
return self.E12(nx / (self.w ^ 2), ny / (self.w ^ 3))
def pair(self, A, B):
A = self.lift_E1_to_E12(A)
B = self.lift_E2_to_E12(B)
return A.ate_pairing(B, r, 12, E12.trace_of_frobenius())
return A.ate_pairing(B, self.r, 12, self.E12.trace_of_frobenius())

Loading…
Cancel
Save