Browse Source

weil-pairing.tex add rational functions & divisors section

master
arnaucube 1 year ago
parent
commit
a0c0742815
4 changed files with 115 additions and 14 deletions
  1. BIN
      notes_nova.pdf
  2. +2
    -2
      notes_nova.tex
  3. BIN
      weil-pairing.pdf
  4. +113
    -12
      weil-pairing.tex

BIN
notes_nova.pdf


+ 2
- 2
notes_nova.tex

@ -109,7 +109,7 @@ where R1CS set $E=0,~u=1$.
\begin{align*}
Az \circ Bz &= A z_1 \circ B z_1 + r(A z_1 \circ B z_2 + A z_2 \circ B z_1) + r^2 (A z_2 \circ B z_2)\\
&= (u_1 C z_1 + E_1) + r (A z_1 \circ B z_2 + A z_2 \circ B z_1) + r^2 (u_2 C z_2 + E_2)\\
&= u_1 C z_1 + \underbrace{E_1 + r(A z_1 \circ B z_2 + A z_2 \circ B z_1) + r^2 E_2}_\text{E} + r^1 u_2 C z_2\\
&= u_1 C z_1 + \underbrace{E_1 + r(A z_1 \circ B z_2 + A z_2 \circ B z_1) + r^2 E_2}_\text{E} + r^2 u_2 C z_2\\
&= u_1 C z_1 + r^2 u_2 C z_2 + E\\
&= (u_1 + r u_2) \cdot C \cdot (z_1 + r z_2) + E\\
&= uCz + E
@ -151,7 +151,7 @@ Let $Z_1 = (W_1, x_1, u_1)$ and $Z_2 = (W_2, x_2, u_2)$.
% \paragraph{Protocol}
\begin{enumerate}
\item P send $\overline{T} = Com(T, r_T)$,\\
where $T=A z_1 \circ B z_1 + A z_2 \circ B z_2 - u_1 C z_2 - u_2 C z_2$\\
where $T=A z_1 \circ B z_1 + A z_2 \circ B z_2 - u_1 C z_1 - u_2 C z_2$\\
and rand $r_T \in \mathbb{F}$
\item V sample random challenge $r \in \mathbb{F}$
\item V, P output the folded instance $\varphi = (\overline{E}, u, \overline{W}, x)$

BIN
weil-pairing.pdf


+ 113
- 12
weil-pairing.tex

@ -34,7 +34,6 @@
\date{August 2022}
\begin{document}
\maketitle
\begin{abstract}
@ -45,15 +44,117 @@
\tableofcontents
\section{Divisors and rational functions}
\section{Rational functions}
Let $E/\Bbbk$ be an elliptic curve defined by: $y^2 = x^3 + Ax + B$.
\paragraph{set of polynomials over $E$:}
$\Bbbk[E] := \Bbbk[x,y] / (y^2 - x^3 - Ax - B =0)$
we can replace $y^2$ in the polynomial $f \in \Bbbk[E]$ with $x^3 + Ax + B$
\paragraph{canonical form:} $f(x,y) = v(x)+y w(x)$ for $v, w \in \Bbbk[x]$
\paragraph{conjugate:} $\overline{f} = v(x) - y w(x)$
\paragraph{norm:} $N_f = f \cdot \overline{f} = v(x)^2 - y^2 w(x)^2 = v(x)^2 - (x^3 + Ax + B) w(x)^2 \in \Bbbk[x] \subset \Bbbk[E]$
we can see that $N_{fg} = N_f \cdot N_g$
\paragraph{set of rational functions over $E$:}
$\Bbbk(E) := \Bbbk[E] \times \Bbbk[E]/ \thicksim$
For $r\in \Bbbk(E)$ and a finite point $P \in E(\Bbbk)$, $r$ is \emph{finite} at $P$ iff
$$\exists~ r=\frac{f}{g} ~\text{with}~ f,g \in \Bbbk[E],~ s.t.~ g(P) \neq 0$$
We define $r(P)=\frac{f(P)}{g(P)}$. Otherwise, $r(P)=\infty$.
Remark: $r=\frac{f}{g} \in \Bbbk(E)$, $r=\frac{f}{g}=\frac{f \cdot \overline{g}}{g \cdot \overline{g}} = \frac{f \overline{g}}{N_g}$, thus
$$r(x,y)=\frac{ (f \overline{g})(x,y)}{N_g(x,y)} = \underbrace{ \frac{v(x)}{N_g(x)} + y \frac{w(x)}{N_g(x)} }_\text{canonical form of $r(x,y)$}$$
\paragraph{degree of $f$:} Let $f\in \Bbbk[E]$, in canonical form: $f(x,y) = v(x) + y w(x)$,
$$deg(f) := max\{ 2 \cdot deg_x(v), 3+2 \cdot deg_x(w) \}$$
For $f,g \in \Bbbk[E]$:
\begin{enumerate}[i.]
\item $deg(f) = deg_x(N_f)$
\item $deg(f \cdot g) = deg(f) + deg(g)$
\end{enumerate}
\begin{definition}
Let $r=\frac{f}{g} \in \Bbbk(E)$
\begin{enumerate}[i.]
\item if $deg(f) < deg(g):~ r(0)=0$
\item if $deg(f) > deg(g):~ r ~\text{is not finite at}~ 0$
\item if $deg(f) = deg(g)$ with $deg(f)$ even:\\
$f$'s canonical form leading terms $ax^d$\\
$g$'s canonical form leading terms $bx^d$\\
$a,b \in \Bbbk^\times,~ d=\frac{deg(f)}{2}$, set $r(0)=\frac{a}{b}$
\item if $deg(f) = deg(g)$ with $deg(f)$ odd\\
$f$'s canonical form leading terms $ax^d$\\
$g$'s canonical form leading terms $bx^d$\\
$a,b \in \Bbbk^\times,~ deg(f)=deg(g)=3+2d$, set $r(0)=\frac{a}{b}$
\end{enumerate}
\end{definition}
\subsection{Zeros, poles, uniformizers and multiplicities}
$r \in \Bbbk(E)$ has a \emph{zero} in $P\in E$ if $r(P)=0$\\
$r \in \Bbbk(E)$ has a \emph{pole} in $P\in E$ if $r(P)$ is not finite.
\paragraph{uniformizer:} Let $P\in E$,
uniformizer: rational function $u \in \Bbbk(E)$ with $u(P)=0$ if
$\forall r\in \Bbbk(E) \setminus \{0\},~ \exists d \in \mathbb{Z},~ s\in \Bbbk(E)$ finite at $P$ with $s(P) \neq 0$ s.t.
$$r=u^d \cdot s$$
\paragraph{order:} Let $P \in E(\Bbbk)$, let $u \in \Bbbk(E)$ be a uniformizer at $P$.
For $r \in \Bbbk(E) \setminus \{0\}$ being a rational function with $r=u^d \cdot s$ with $s(P)\neq 0, \infty$, we say that $r$ has \emph{order} $d$ at $P$ ($ord_P(r)=d$).
\paragraph{multiplicity:} \emph{multiplicity of a zero} of $r$ is the order of $r$ at that point, \emph{multiplicity of a pole} of $r$ is the order of $r$ at that point.
if $P \in E(\Bbbk)$ is neither a zero or pole of $r$, then $ord_P(r)=0$ ($=d,~ r=u^0s$).
\vspace{0.5cm}
\begin{minipage}{4.3 in}
\paragraph{Multiplicities, from the book "Elliptic Tales"} (p.69), to provide intuition
Factorization into \emph{linear factors}: $p(x)=c\cdot (x-a_1) \cdots (x-a_d)$\\
$d$: degree of $p(x)$, $a_i \in \Bbbk$\\
Solutions to $p(x)=0$ are $x=a_1, \ldots, a_d$ (some $a_i$ can be repeated)\\
eg.: $p(x)=(x-1)(x-1)(x-3)$, solutions to $p(x)=0:~ 1, 1, 3$\\
$x=1$ is a solution to $p(x)=0$ of \emph{multiplicity} 2.
The total number of solutions (counted with multiplicity) is $d$, the degree of the polynomial whose roots we are finding.
\end{minipage}
\section{Divisors}
\begin{definition}{Divisor}
$$D= \sum_{P \in E(\mathbb{K})} n_p \cdot [P]$$
$$D= \sum_{P \in E(\Bbbk)} n_p \cdot [P]$$
\end{definition}
\begin{definition}{Degree \& Sum}
$$deg(D)= \sum_{P \in E(\mathbb{K})} n_p$$
$$sum(D)= \sum_{P \in E(\mathbb{K})} n_p \cdot P$$
$$deg(D)= \sum_{P \in E(\Bbbk)} n_p$$
$$sum(D)= \sum_{P \in E(\Bbbk)} n_p \cdot P$$
\end{definition}
The set of all divisors on $E$ forms a group: for $D = \sum_{P\in E(\Bbbk)} n_P[P]$ and $D' = \sum_{P\in E(\Bbbk)} m_P[P]$,
$$D+D' = \sum_{P\in E(\Bbbk)} (n_P + m_P)[P]$$
\begin{definition}{Associated divisor}
$$div(r) = \sum_{P \in E(\Bbbk)} ord_P(r)[P]$$
\end{definition}
Observe that
\begin{enumerate}
\item[] $div(rs) = div(r)+div(s)$
\item[] $div(\frac{r}{s}) = div(r)-div(s)$
\end{enumerate}
Observe that
$$\sum{P \in E(\Bbbk)} ord_P(r) \cdot P = 0$$
\begin{definition}{Support}
$$\sum_P n_P[P], ~\forall P \in E(\Bbbk) \mid n_P \neq 0$$
\end{definition}
\begin{definition}{Principal divisor}
@ -62,21 +163,21 @@
$D \sim D'$ iff $D - D'$ is principal.
\begin{definition}{Evaluation of a rational function}
\begin{definition}{Evaluation of a rational function} (function $r$ evaluated at $D$)
$$r(D)= \prod r(P)^{n_p}$$
\end{definition}
\section{Weil reciprocity}
\begin{theorem}{(Weil reciprocity)}
Let $E/ \mathbb{K}$ be an e.c. over an alg. closed field. If $r,~s \in \mathbb{K}\setminus \{0\}$ are rational functions whose divisors have disjoint support, then
Let $E/ \Bbbk$ be an e.c. over an alg. closed field. If $r,~s \in \Bbbk\setminus \{0\}$ are rational functions whose divisors have disjoint support, then
$$r(div(s)) = s(div(r))$$
\end{theorem}
Proof. (todo)
\section{Generic Weil Pairing}
Let $E(\mathbb{K})$, with $\mathbb{K}$ of char $p$, $n$ s.t. $p \nmid n$.
Let $E(\Bbbk)$, with $\Bbbk$ of char $p$, $n$ s.t. $p \nmid n$.
$\mathbb{K}$ large enough: $E(\mathbb{K})[n] = E(\mathbb{\overline{K}}) = \mathbb{Z}_n \oplus \mathbb{Z}_n$ (with $n^2$ elements).
$\Bbbk$ large enough: $E(\Bbbk)[n] = E(\overline{\Bbbk}) = \mathbb{Z}_n \oplus \mathbb{Z}_n$ (with $n^2$ elements).
For $P, Q \in E[n]$,
\begin{align*}
@ -143,7 +244,7 @@ with $S \neq \{O, P, -Q, P-Q \}$.
\begin{solution}{6.29}
$div(R(x) \cdot S(x)) = div( R(x)) + div( S(x))$, where $R(x), S(x)$ are rational functions.
\\proof:\\
\emph{Norm} of $f$: $N_f = f \cdot \overline{f}$, and we know that $N_{fg} = N_f \cdot N_g~\forall~\mathbb{K}[E]$,\\
\emph{Norm} of $f$: $N_f = f \cdot \overline{f}$, and we know that $N_{fg} = N_f \cdot N_g~\forall~\Bbbk[E]$,\\
then $$deg(f) = deg_x(N_f)$$\\
and $$deg(f \cdot g) = deg(f) + deg(g)$$
@ -151,8 +252,8 @@ with $S \neq \{O, P, -Q, P-Q \}$.
$$deg(f \cdot g) = deg_x(N_{fg}) = deg_x(N_f \cdot N_g)$$
$$= deg_x(N_f) + deg_x(N_g) = deg(f) + deg(g)$$
So, $\forall P \in E(\mathbb{K}),~ ord_P(rs) = ord_P(r) + ord_P(s)$.\\
As $div(r) = \sum_{P\in E(\mathbb{K})} ord_P(r)[P]$, $div(s) = \sum ord_P(s)[P]$.
So, $\forall P \in E(\Bbbk),~ ord_P(rs) = ord_P(r) + ord_P(s)$.\\
As $div(r) = \sum_{P\in E(\Bbbk)} ord_P(r)[P]$, $div(s) = \sum ord_P(s)[P]$.
So,
$$div(rs) = \sum ord_P(rs)[P]$$

Loading…
Cancel
Save