diff --git a/.gitignore b/.gitignore index 5d7fea2..552c4ca 100644 --- a/.gitignore +++ b/.gitignore @@ -11,3 +11,4 @@ *.nav *.snm *.vrb +galois-theory-notes.bib diff --git a/galois-theory-notes.pdf b/galois-theory-notes.pdf new file mode 100644 index 0000000..a83fd5b Binary files /dev/null and b/galois-theory-notes.pdf differ diff --git a/galois-theory-notes.tex b/galois-theory-notes.tex new file mode 100644 index 0000000..e83afb9 --- /dev/null +++ b/galois-theory-notes.tex @@ -0,0 +1,151 @@ +\documentclass{article} +\usepackage[utf8]{inputenc} +\usepackage{amsfonts} +\usepackage{amsthm} +\usepackage{amsmath} +\usepackage{enumerate} +\usepackage{hyperref} + +\begin{filecontents}[overwrite]{galois-theory-notes.bib} +@misc{ianstewart, + author = {Ian Stewart}, + title = {{Galois Theory, Third Edition}}, + year = {2004} +} +\end{filecontents} +\nocite{*} + + +\theoremstyle{definition} + +\newtheorem{innerdefn}{Definition} +\newenvironment{defn}[1] +{\renewcommand\theinnerdefn{#1}\innerdefn} +{\endinnerdefn} + +\newtheorem{innerthm}{Theorem} +\newenvironment{thm}[1] +{\renewcommand\theinnerthm{#1}\innerthm} +{\endinnerthm} + +\newtheorem{innerlemma}{Lemma} +\newenvironment{lemma}[1] +{\renewcommand\theinnerlemma{#1}\innerlemma} +{\endinnerlemma} + +\newtheorem{innercor}{Lemma} +\newenvironment{cor}[1] +{\renewcommand\theinnercor{#1}\innercor} +{\endinnercor} + +\newtheorem{innereg}{Example} +\newenvironment{eg}[1] +{\renewcommand\theinnereg{#1}\innereg} +{\endinnereg} + + +\title{Galois Theory notes} +\author{arnaucube} +\date{2023-2024} + +\begin{document} + +\maketitle + +\begin{abstract} + Notes taken while studying Galois Theory, mostyly from Ian Stewart's book "Galois Theory" \cite{ianstewart}. + + Usually while reading books and papers I take handwritten notes in a notebook, this document contains some of them re-written to $LaTeX$. + + The notes are not complete, don't include all the steps neither all the proofs. +\end{abstract} + +\tableofcontents + +\section{Recap on the degree of field extensions} + +\begin{defn}{4.10} + A \emph{simple extension} is $L:K$ such that $L=K(\alpha)$ for some $\alpha \in L$. +\end{defn} +\begin{eg}{4.11} + Beware, $L=\mathbb{Q}(i, -i, \sqrt{5}, -\sqrt{5}) = \mathbb{Q}(i, \sqrt{5}) = \mathbb{Q}(i+\sqrt{5})$. +\end{eg} + +\begin{defn}{5.5} + Let $L:K$, suppose $\alpha \in L$ is algebraic over $K$. Then, the \emph{minimal polynomial} of $\alpha$ over $K$ is the unique monic polynomial $m$ over $K$, $m(t) \in K[t]$, of smallest degree such that $m(\alpha)=0$. + \\ + eg.: $i \in \mathbb{C}$ is algebraic over $\mathbb{R}$. The minimal polynomial of $i$ over $\mathbb{R}$ is $m(t)=t^2 +1$, so that $m(i)=0$. +\end{defn} + +\begin{lemma}{5.9} + Every polynomial $a \in K[t]$ is congruent modulo $m$ to a unique polynomial of degree $< \delta m$. +\end{lemma} +\begin{proof} + Divide $a / m$ with remainder, $a= qm +r$, with $q,r \in K[t]$ and $\delta r < \delta m$. + Then, $a-r=qm$, so $a \equiv r \pmod{m}$. + + It remains to prove uniqueness. + + Suppose $\exists~ r \equiv s \pmod{m}$, with $\delta r, \delta s < \delta m$. + Then, $r-s$ is divisible by $m$, but has smaller degree than $m$. + + Therefore, $r-s=0$, so $r=s$, proving uniqueness. +\end{proof} + +\begin{lemma}{5.14} + Let $K(\alpha):K$ be a simple algebraic extension, let $m$ be the minimal polynomial of $\alpha$ over $K$, let $\delta m =n$. + + Then $\{1, \alpha, \alpha^2, \ldots, \alpha^{n-1}\}$ is a basis for $K(\alpha)$ over $K$. + In particular, $[K(\alpha):K]=n$. +\end{lemma} + +\begin{defn}{6.2} + The degree $[L:K]$ of a field extension $L:K$ is the dimension of L considered as a vector space over $K$. + + Equivalently, the dimension of $L$ as a vector space over $K$ is the number of terms in the expression for a general element of $L$ using coefficients from $K$. +\end{defn} + +\begin{eg}{6.3} + \begin{enumerate} + \item $\mathbb{C}$ elements are 2-dimensional over $\mathbb{R}$ ($p+qi \in \mathbb{C}$, with $p,q \in \mathbb{R}$), because a basis is $\{1, i\}$, hence $[\mathbb{C}:\mathbb{R}]=2$. + \item $[ \mathbb{Q}(i, \sqrt{5}) : \mathbb{Q}]=4$, since the elements $\{1, \sqrt{5}, i, i\sqrt{5}\}$ form a basis for $\mathbb{Q}(i, \sqrt{5})$ over $\mathbb{Q}$. + \end{enumerate} +\end{eg} + +\begin{thm}{6.4}\emph{(Short Tower Law)} + If $K, L, M \subseteq \mathbb{C}$, and $K \subseteq L \subseteq M$, then $[M:K]=[M:L]\cdot [L:K]$. +\end{thm} +\begin{proof} + Let $(x_i)_{i \in I}$ be a basis for $L$ over $K$, + let $(y_j)_{j \in J}$ be a basis for $M$ over $L$.\\ + $\forall i \in I, j \in J$, we have $x_i \in L, u_j \in M$. + \\ + Want to show that $(x_i y_j)_{i\in I, j\in J}$ is a basis for $M$ over $K$. + \begin{enumerate}[i.] + \item prove linear independence:\\ + Suppose that + $$\sum_{ij} k_{ij} x_i y_j = 0 ~(k_{ij} \in K)$$ + rearrange + $$\sum_j (\underbrace{\sum_i k_{ij} x_i}_{\in L}) y_j = 0 ~(k_{ij} \in K)$$ + Since $\sum_i k_{ij} x_i \in L$, and the $y_j \in M$ are linearly independent over $L$, then $\sum_i k_{ij} x_i = 0$. + \\ + Repeating the argument inside $L$ $\longrightarrow$ $k_{ij}=0 ~~\forall i\in I, j\in J$. + \\ + So the elements $x_i y_j$ are linearly independent over $K$. + + \item prove that $x_i y_j$ span $M$ over $K$:\\ + Any $x \in M$ can be written $x=\sum_j \lambda_j y_j$ for $\lambda_j \in L$, because $y_j$ spans $M$ over $L$. + Similarly, $\forall j\in J,~ \lambda_j = \sum_i \lambda_{ij} x_i y_j$ for $\lambda_{ij} \in K$.\\ + Putting the pieces together, $x=\sum_{ij} \lambda_{ij} x_i y_j$ as required. + \end{enumerate} +\end{proof} + +\begin{cor}{6.6}\emph{(Tower Law)}\\ + If $K_0 \subseteq K_1 \subseteq \ldots \subseteq K_n$ are subfields of $\mathbb{C}$, then + $$[K_n:K_0] = [K_n:K_{n-1}] \cdot [K_{n-1}:K_{n-2}] \cdot \ldots \cdot [K_1: K_0]$$ +\end{cor} + +\bibliographystyle{unsrt} +\bibliography{galois-theory-notes.bib} + +\end{document}