Browse Source

small update on notes_nova, fix typo on notes_halo

master
arnaucube 1 year ago
parent
commit
ba6a51e768
4 changed files with 12 additions and 2 deletions
  1. BIN
      notes_halo.pdf
  2. +1
    -1
      notes_halo.tex
  3. BIN
      notes_nova.pdf
  4. +11
    -1
      notes_nova.tex

BIN
notes_halo.pdf


+ 1
- 1
notes_halo.tex

@ -112,7 +112,7 @@ Now, for $k$ rounds ($d=2^k$, from $j=k$ to $j=1$):
\item Prover sets random blinding factors: $l_j, r_j \in \mathbb{F}_p$
\item Prover computes
$$L_j = < \overrightarrow{a}_{lo}, \overrightarrow{G}_{hi}> + [l_j] H + [< \overrightarrow{a}_{lo}, \overrightarrow{b}_{hi}>] U$$
$$R_j = < \overrightarrow{a}_{lo}, \overrightarrow{G}_{hi}> + [l_j] H + [< \overrightarrow{a}_{lo}, \overrightarrow{b}_{hi}>] U$$
$$R_j = < \overrightarrow{a}_{hi}, \overrightarrow{G}_{lo}> + [r_j] H + [< \overrightarrow{a}_{hi}, \overrightarrow{b}_{lo}>] U$$
\item Verifier sends random challenge $u_j \in \mathbb{I}$
\item Prover computes the halved vectors for next round:
$$\overrightarrow{a} \leftarrow \overrightarrow{a}_{hi} \cdot u_j^{-1} + \overrightarrow{a}_{lo} \cdot u_j$$

BIN
notes_nova.pdf


+ 11
- 1
notes_nova.tex

@ -64,6 +64,8 @@
Usually while reading papers I take handwritten notes, this document contains some of them re-written to $LaTeX$.
The notes are not complete, don't include all the steps neither all the proofs.
Thanks to \href{https://twitter.com/levs57}{Levs57}, \href{https://twitter.com/nibnalin}{Nalin Bhardwaj} and \href{https://twitter.com/cperezz19}{Carlos Pérez} for clarifications on the Nova paper.
\end{abstract}
\tableofcontents
@ -72,7 +74,15 @@
\subsection{R1CS modification}
Want: merge 2 instances of R1CS with the same matrices into a single one. Each instance has $z_i = (W_i,~ x_i)$ (public witness, private values resp.).
\paragraph{R1CS}
R1CS instance: $(A, B, C, io, m, n)$, where $io$ denotes the public input and output, $A, B, C \in \mathbb{F}^{m \times n}$, with $m \geq |io|+1$.
R1CS is satisfied by a witness $w \in \mathbb{F}^{m-|io|-1}$ such that
$$Az \circ Bz = Cz$$
where $z=(io, 1, w)$.
\vspace{0.5cm}
\textbf{Want}: merge 2 instances of R1CS with the same matrices into a single one. Each instance has $z_i = (W_i,~ x_i)$ (public witness, private values resp.).
\paragraph{traditional R1CS}
Merged instance with $z=z_1 + r z_2$, for rand $r$. But, since R1CS is not linear $\longrightarrow$ can not apply.

Loading…
Cancel
Save