diff --git a/.github/workflows/typos.toml b/.github/workflows/typos.toml index 0c9ac88..19ff2b7 100644 --- a/.github/workflows/typos.toml +++ b/.github/workflows/typos.toml @@ -1,5 +1,10 @@ [default.extend-words] thm = "thm" + +# equations stuff ba = "ba" -Strang = "Strang" # name -Bootle = "Bootle" # name +nd = "nd" + +# names +Strang = "Strang" +Bootle = "Bootle" diff --git a/commutative-algebra-notes.pdf b/commutative-algebra-notes.pdf index 8134c3f..23403c0 100644 Binary files a/commutative-algebra-notes.pdf and b/commutative-algebra-notes.pdf differ diff --git a/commutative-algebra-notes.tex b/commutative-algebra-notes.tex index dea6725..846f7de 100644 --- a/commutative-algebra-notes.tex +++ b/commutative-algebra-notes.tex @@ -178,6 +178,61 @@ $$A \supset \mM ~\text{or}~ (A, \mM) ~\text{or}~ (A, \mM, K)$$ \end{defn} +\subsection{$\mathbb{Z}$ and $K[X]$, two Principal Ideal Domains} + + +\begin{lemma}{} + $\mathbb{Z}$ is a PID. +\end{lemma} +\begin{proof} + Let $I$ a nonzero ideal of $\mathbb{Z}$. + + Since $I \neq \{0\}$, there is at least one nonzero integer in $I$. Choose the smallest element of $I$, namely $d$. + + Observe that $(d) \subseteq I$, since $d \in I$. Then, every multiple $nd \in I$, since $I$ is an ideal. + + Take $a \in I$. By the Euclidean division algorithm in $\mathbb{Z}$, $a=qd+r$, with $q,r \in \mathbb{Z}$ and $0 \leq r \leq d$. + + Then $r = a - qd \in I$, but $d$ was chosen to be the smallest positive element of $I$, so the only possibility is $r=0$. + + Hence, $a=qd$, so $a \in (d)$, giving $I \subseteq (d)$. + + Since we had $(d) \subseteq I$ and now we got $I \subseteq (d)$, we have $I = (d)$, so every ideal of $\mathbb{Z}$ is principal. Thus $\mathbb{Z}$ is a Principal Ideal Domain(PID). +\end{proof} + +\begin{lemma}{} + $K[X]$ is a PID. +\end{lemma} +\begin{proof} + This proof follows very similarly to the previous proof.\\ + + Let $K$ be a field, $K[X]$ a polynomial ring. + + Take $\{0\} \neq I \subseteq K[X]$. + + Since $I \neq \{0\}$, there is at least one non-zero polynomial in $I$. + + Let $p(X) \in I$ be of minimal degree among nonzero elements of $I$. + + Observe that $(p(X)) \subseteq I$, because $p(X) \in I$ and $I$ is an ideal. + + Let $f(X) \in I$. By Euclidean division algorithm in $K[X]$, $\exists q, r \in K[X]$ such that $f(X) = q(X) \cdot p(X) + r(X)$ with eithr $r(X)=0$ or $deg(r) < deg(p)$. + + Since $f,p \in I$, then $r(X) = f(X) - q(X)\cdot p(X) \in I$ + + If $r(X) \neq 0$, then $deg(r) < deg(p)$, which contradicts the minimality of $deg(p)$ in $I$. + + Therefore, $r(X)=0$, thus $f(X)=q(X)\cdot p(X)$, hence $f(X) \in (p(X))$. + Henceforth, $I \subseteq (p(X))$. + + Then, since $(p(X)) \subseteq I$ and $I \subseteq (p(X))$, we have that $I = (p(X))$. + + So every ideal of $K[X]$ is principal; thus $K[X]$ is a PID. + +\end{proof} + + + \subsection{Lemmas, propositions and corollaries} Let $\Sigma$ be a partially orddered set. Given subset $S \subset \Sigma$, an \emph{upper bound} of $S$ is an element $u \in \Sigma$ such that $s