diff --git a/commutative-algebra-notes.pdf b/commutative-algebra-notes.pdf index bae5bb7..1d9c7fe 100644 Binary files a/commutative-algebra-notes.pdf and b/commutative-algebra-notes.pdf differ diff --git a/commutative-algebra-notes.tex b/commutative-algebra-notes.tex index 42a92cd..34d1460 100644 --- a/commutative-algebra-notes.tex +++ b/commutative-algebra-notes.tex @@ -73,7 +73,7 @@ \title{Commutative Algebra notes} \author{arnaucube} -\date{} +\date{2026} \begin{document} @@ -93,44 +93,44 @@ \subsection{Definitions} -\begin{defn}{ideal} +\begin{defn}{}{ideal} $I \subset R$ ($R$ ring) such that $0 \in I$ and $\forall x \in I,~ r \in R,~ xr, rx \in I$.\\ \hspace*{2em} ie. $I$ absorbs products in $R$. \end{defn} -\begin{defn}{prime ideal} +\begin{defn}{}{prime ideal} if $a, b \in R$ with $ab \in P$ and $P \neq R$ ($P$ a prime ideal), implies $a in P$ or $b \in P$. \end{defn} -\begin{defn}{principal ideal} +\begin{defn}{}{principal ideal} generated by a single element, $(a)$. $(a)$: principal ideal, the set of all multiples $xa$ with $x \in R$. \end{defn} -\begin{defn}{maximal ideal} +\begin{defn}{}{maximal ideal} $\mM \subset A$ ($A$ ring) with $m \neq A$ and there is no ideal $I$ strictly between $\mM$ and $A$. ie. if $\mM$ maximal and $\mM \subseteq I \subseteq A$, either $\mM=I$ or $I=A$. \end{defn} -\begin{defn}{unit} +\begin{defn}{}{unit} $x \in A$ such that $xy=1$ for some $y \in A$. ie. element \emph{which divides 1}. \end{defn} -\begin{defn}{zerodivisor} +\begin{defn}{}{zerodivisor} $x \in A$ such that $\exists 0 \neq y \in A$ such that $xy=0 \in A$. ie. $x$ \emph{divides 0}.. If a ring does not have zerodivisors is an integral domain. \end{defn} -\begin{defn}{prime spectrum - $Spec(A)$} +\begin{defn}{}{prime spectrum - $Spec(A)$} set of prime ideals of $A$. ie. $$Spec(A) = \{ P ~|~ P \subset A~ \text{is a prime ideal} \}$$ \end{defn} -\begin{defn}{integral domain} +\begin{defn}{}{integral domain} Ring in which the product of any two nonzero elements is nonzero. ie. no zerodivisors. @@ -140,15 +140,15 @@ Every field is an integral domain, not the converse. \end{defn} -\begin{defn}{principal ideal domain - PID} +\begin{defn}{}{principal ideal domain - PID} integral domain in which every ideal is principal. ie. ie. $\forall I \subset R,~ \exists~ a \in I$ such that $I = (a) = \{ ra ~|~ r \in R \}$. \end{defn} -\begin{defn}{nilpotent} +\begin{defn}{}{nilpotent} $a \in A$ such that $a^n=0$ for some $n>0$. \end{defn} -\begin{defn}{nilrad A} +\begin{defn}{}{nilrad A} set of all nilpotent elements of $A$; is an ideal of $A$. if $nilrad A = 0 ~\Longrightarrow$ $A$ has no nonzero nilpotents. @@ -157,11 +157,11 @@ $$nilrad A = \bigcap_{P \in Spec(A)} P$$ \end{defn} -\begin{defn}{idempotent} +\begin{defn}{}{idempotent} $e \in A$ such that $e^2=e$. \end{defn} -\begin{defn}{radical of an ideal} +\begin{defn}{}{radical of an ideal} $$rad I = \{ f \in A | f^n \in I~ \text{for some} n \}$$ $rad I$ is an ideal. @@ -171,7 +171,7 @@ $rad I = \bigcap_{\substack{P \in \operatorname{Spec}(A)\\ P \supset I}} P$ \end{defn} -\begin{defn}{local ring} +\begin{defn}{}{local ring} A \emph{local ring} has a unique maximal ideal. Notation: local ring $A$, its maximal ideal $\mM$, residue field $K=A/\mM$: @@ -233,7 +233,7 @@ -\subsection{Lemmas, propositions and corollaries} +\subsection{Zorn's lemma and Jacobson radicals} Let $\Sigma$ be a partially orddered set. Given subset $S \subset \Sigma$, an \emph{upper bound} of $S$ is an element $u \in \Sigma$ such that $s