diff --git a/notes_hypernova.pdf b/notes_hypernova.pdf index d52b0c3..f24a0f6 100644 Binary files a/notes_hypernova.pdf and b/notes_hypernova.pdf differ diff --git a/notes_hypernova.tex b/notes_hypernova.tex index 188df69..c9dc398 100644 --- a/notes_hypernova.tex +++ b/notes_hypernova.tex @@ -349,17 +349,15 @@ $$\theta_{k,j} = \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \wide And in \emph{step 5}, $V$ checks -% TODO check orange gamma^j... \begin{align*} c &= \left(\sum_{j \in [t]} \gamma^j \cdot e_1 \cdot \sigma_{1,j} -~\textcolor{orange}{+ \gamma^{t+j} \cdot e_1 \cdot \sigma_{2,j}}\right)\\ - &+ \gamma^{2t+1} \cdot e_2 \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_j \right) - + \textcolor{cyan}{\gamma^{2t+2} \cdot e_2 \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_j \right)} +~\textcolor{orange}{+ \gamma^{t+j} \cdot e_2 \cdot \sigma_{2,j}}\right)\\ + &+ \gamma^{2t+1} \cdot e_3 \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_j \right) + + \textcolor{cyan}{\gamma^{2t+2} \cdot e_4 \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_j \right)} \end{align*} where -% TODO check e_4 -$e_1 \leftarrow \widetilde{eq}(r_{1,x}, r_x'),~ e_2 \leftarrow \widetilde{eq}(r_{2,x}, r_x')$, $e_3 \leftarrow \widetilde{eq}(\beta, r_x'),~ e_4 \leftarrow \widetilde{eq}(\beta', r_x')$ (note: wip, pending check for $\beta, \beta'$ used in step 3). +$e_1 \leftarrow \widetilde{eq}(r_{1,x}, r_x'),~ e_2 \leftarrow \widetilde{eq}(r_{2,x}, r_x')$, $e_3, e_4 \leftarrow \widetilde{eq}(\beta, r_x')$. \vspace{0.5cm} diff --git a/weil-pairing.pdf b/weil-pairing.pdf index 1968457..ec20e7a 100644 Binary files a/weil-pairing.pdf and b/weil-pairing.pdf differ diff --git a/weil-pairing.tex b/weil-pairing.tex index 6d660b6..cc637f6 100644 --- a/weil-pairing.tex +++ b/weil-pairing.tex @@ -151,14 +151,16 @@ Observe that \end{enumerate} Observe that -$$\sum{P \in E(\Bbbk)} ord_P(r) \cdot P = 0$$ +$$\sum_{P \in E(\Bbbk)} ord_P(r) \cdot P = 0$$ -\begin{definition}{Support} - $$\sum_P n_P[P], ~\forall P \in E(\Bbbk) \mid n_P \neq 0$$ +\begin{definition}{Support of a divisor} + $$\sum_P n_P[P], ~\forall P \in E(\Bbbk) ~\text{s.t.}~ n_P \neq 0$$ \end{definition} \begin{definition}{Principal divisor} - iff $deg(D)=0$ and $sum(D)=0$ + iff + $$deg(D)=0$$ + $$sum(D)=0$$ \end{definition} $D \sim D'$ iff $D - D'$ is principal. @@ -169,11 +171,24 @@ $D \sim D'$ iff $D - D'$ is principal. \section{Weil reciprocity} \begin{theorem}{(Weil reciprocity)} - Let $E/ \Bbbk$ be an e.c. over an alg. closed field. If $r,~s \in \Bbbk\setminus \{0\}$ are rational functions whose divisors have disjoint support, then + Let $E/ \Bbbk$ be an e.c. over an algebraically closed field. If $r,~s \in \Bbbk\setminus \{0\}$ are rational functions whose divisors have disjoint support, then $$r(div(s)) = s(div(r))$$ \end{theorem} Proof. (todo) +\paragraph{Example} +\begin{align*} + p(x)=x^2 - 1,&~ q(x)=\frac{x}{x-2}\\ + div(p)&= 1 \cdot [1] + 1 \cdot [-1] - 2 \cdot [\infty]\\ + div(q)&= 1 \cdot [0] - 1 \cdot [2]\\ + &\text{(they have disjoint support)}\\ + p(div(q)) &= p(0)^1 \cdot p(2)^{-1}= (0^2 - 1)^1 \cdot (2^2 - 1)^{-1} = \frac{-1}{3}\\ + q(div(p)) &= q(1)^1 \cdot q(-1)^1 - q(\infty)^2\\ + &= (\frac{1}{1-2})^1 \cdot (\frac{-1}{-1-2})^1 \cdot (\frac{\infty}{\infty - 2})^2 = \frac{-1}{3} +\end{align*} + +so, $p(div(q))=q(div(p))$. + \section{Generic Weil Pairing} Let $E(\Bbbk)$, with $\Bbbk$ of char $p$, $n$ s.t. $p \nmid n$. @@ -236,6 +251,24 @@ with $S \neq \{O, P, -Q, P-Q \}$. \section{Properties} +\begin{enumerate}[i.] + \item $e_n(P, Q)^n = 1 ~\forall P,Q \in E[n]$\\ + ($\Rightarrow~ e_n(P,Q)$ is a $n^{th}$ root of unity) + \item Bilinearity + $$e_n(P_1+P_2, Q) = e_n(P_1, Q) \cdot e_n(P_2, Q)$$ + $$e_n(P, Q_1+Q_2) = e_n(P, Q_1) \cdot e_n(P, Q_2)$$ + \emph{proof:} + recall that $e_n(P,Q)=\frac{g(S+P)}{g(S)}$, then, + \begin{align*} + e_n(P_1, Q) &\cdot e_n(P_2, Q) = \frac{g(P_1 + S)}{g(S)} \cdot \frac{g(P_2 + P_1 + S)}{g(P_1 + S)}\\ + &\text{(replace $S$ by $S+P_1$)}\\ + &= \frac{g(P_2 + P_1 + S)}{g(S)} = e_n(P_1+P_2, Q) + \end{align*} + \item Alternating + $$e_n(P, P)=1 ~\forall P\in E[n]$$ + \item Nondegenerate + $$\text{if}~ e_n(P,Q)=1 ~\forall Q\in E[n],~ \text{then}~ P=0$$ +\end{enumerate} \section{Exercises}