variety def, Nullstellensatz proof, correspondences V - I

This commit is contained in:
2026-01-24 09:06:02 +01:00
parent d2fad9d177
commit d1e53f10df
2 changed files with 137 additions and 1 deletions

Binary file not shown.

View File

@@ -99,7 +99,7 @@
\end{defn} \end{defn}
\begin{defn}{}[prime ideal] \begin{defn}{}[prime ideal]
if $a, b \in R$ with $ab \in P$ and $P \neq R$ ($P$ a prime ideal), implies $a in P$ or $b \in P$. if $a, b \in R$ with $ab \in P$ and $P \neq R$ ($P$ a prime ideal), implies $a \in P$ or $b \in P$.
\end{defn} \end{defn}
\begin{defn}{}[principal ideal] \begin{defn}{}[principal ideal]
@@ -1407,9 +1407,145 @@ Note: for $k$ a field, $k[X_1, \ldots, X_n]$, $m$ maximal ideal; the residue fie
So, $\forall x_i \in k$, its image in the quotient field $A/m$ must be an element of $k$. So, $\forall x_i \in k$, its image in the quotient field $A/m$ must be an element of $k$.
$$\Longrightarrow x_i'=a_i \in k, ~\forall i \in [n]$$ $$\Longrightarrow x_i'=a_i \in k, ~\forall i \in [n]$$
$$\Longrightarrow x_i - a_i \in m$$ $$\Longrightarrow x_i - a_i \in m$$
The ideal generated by these terms is a subset of $m$:
$$J=(X_1 -a_1, \ldots, X_n -a_n) \subseteq m$$
Since $J$ is the kernetl of the evaluation map at point $(a_1, \ldots, a_n)$,
then $J$ is a maximal ideal. Together with $J \subseteq m$, then we have
$J=m$, ie. $$m = (X_1 -a_1, \ldots, X_n -a_n)$$
\vspace{0.3cm}
Let
\begin{align*}
\psi: k[X_1, \ldots, X_n] &\longrightarrow k[X_1, \ldots, X_n]/m\\
\psi: x_i &\longmapsto a_i
\end{align*}
Since $\psi$ is a $k$-algebra homomorphism, then $\forall f \in A$:
$$\psi(f(X_1, \ldots, X_n)) = f(\psi(x_1), \ldots, \psi(x_n))= f(a_1, \ldots, a_n)$$
Thus there is a one-to-one correspondence:
points in $k^n ~~~ \longleftrightarrow~~~ m-Spec A$ (maximal ideals in $k[X_1, \ldots, X_n]$
$(a_1, \ldots, a_n) ~~~\longleftrightarrow~~~ (X_1 - a_1, \ldots, X_n - a_n)$
\end{proof} \end{proof}
\vspace{0.5cm}
\begin{defn}{5.3}[Variety]
A \emph{variety} $V \subset k^n$:
$$ V = V(J) = \{ P=(a_1, \ldots, a_n) \in k^n | f(P)=0 ~\forall~ f \in J \}$$
\begin{itemize}
\item[$\rightarrow$] $V$ is defined by $f_1(P)= \ldots = f_m(P) = 0$
\item[$\rightarrow$] $V$ is defined as the simultaneous solutions of a number of polynomial equations.
\end{itemize}
\end{defn}
\begin{prop}{5.3} \label{5.3}
TODO
\end{prop}
\begin{proof}
\end{proof}
\begin{prop}{5.5}[Correspondeces $V$ and $I$] \label{5.5}
A variety $X \subset k^n$ is by definition $X=V(J)$ (J an ideal of $k[X_1, \ldots, X_n]$).
So $V$ gives a map:\\
$$\{ \text{ideals of}~ k[X_1, \ldots, X_n] \} \stackrel{V}{\longrightarrow} \{ \text{subsets}~ X ~\text{of}~ k^n \}$$
correspondence going the other way:
$$\{ \text{subsets}~ X ~\text{of}~ k^n \} \stackrel{I}{\longrightarrow} \{ \text{ideals of} ~k[X_1, \ldots, X_n] \}$$
defined by taking a subset $X \subset k^n$ into the ideal
$$I(X) = \{ f \in k[X_1, \ldots, X_n] | f(P)=0 ~\forall~ P \in X \}$$
\vspace{0.4cm}
$V,~I$ satisfy reverse inclusions:
$$J \subset J' ~\Longrightarrow~ V(J) \supset V(J') ~~~~\text{and}~~~~ X \subset Y ~\Longrightarrow~ I(X) \supset I(Y)$$
\end{prop}
\vspace{0.5cm}
\begin{thm}{5.6}[Nullstellensatz] \label{nullstellensatz}
Let $k$ algebraically closed field.
\begin{enumerate}[a.]
\item if $J \subsetneq k[X_1, \ldots, X_n]$ then $V(J) \neq \emptyset$
\item $I(V(J)) = rad J$, in other words, for $f \in k[X_1, \ldots, X_n]$,
$$f(P)=0 ~\forall~ P \in V ~~\Longleftrightarrow~ f^n \in J ~\text{for some $n$.}$$
\end{enumerate}
\end{thm}
\begin{proof}
\begin{enumerate}[a.]
\item if $J \subsetneq k[X_1, \ldots, X_n]$ then $V(J) \neq \emptyset$:\\
Let $m \subset k[X_1, \ldots, X_n]$ be a maximal ideal.\\
Then $L=k[X_1, \ldots, X_n]/m$ is a field (by TODO ref).
By Zariski's lemma (\ref{zariski}), since $L$ is generated as a $k$-algebra by the images of the variables $x_i$, and $k$ is algebraically closed.
Then the only algebraic extension of $k$ is $k$ itself. Thus $L \cong k$.
\vspace{0.3cm}
Then $\exists$ a surjective homomorphism $\psi: k[X_1, \ldots, X_n] \longrightarrow k$.
Let $a_i = \psi(x_i)$. Then $x_i - a \in ker(\psi) = m ~\forall~ i$.
Since the ideal $(X_1 - a_1, \ldots, X_n - a_n)$ is maximal and contained in $m$, they must be equal, ie. $m = (X_1 - a_1, \ldots, X_n - a_n)$.
Therefore, $P=(a_1, \ldots, a_n) \in k^n$ is a zero for every polynomial in $m$.
Since $J \subseteq m$, $P$ is also a zero for every polynomial in $J$.\\
$\Longrightarrow~$ thus $P \in V(J)$, and thus $V(J) \neq \emptyset$.
\item $I(V(J)) = rad J$:\\
\begin{align*}
I(V(J)) &= rad J\\
\text{vanishing ideal of a variety} &= \text{radical of the ideal defining the variety}
\end{align*}
where $rad~J = \{ f \in R ~|~ f^n \in J ~\text{for some}~ n>0 \}$.
Want to show that if a polynomial vanishes at all points where $g_1, \ldots, g_m$ vanish, then $f \in rad(g_1, \ldots, g_m)$.
Consider the ring $k[X_1, \ldots, X_n, Y]$ and the ideal $J'$ generated by $\{ g_1, \ldots, g_m, 1-Y f \}$
Suppose there is a point $(a_1, \ldots, a_n, a_{n+1})$ that is a zero of $J'$. ie.
$$\exists~ (a_1, \ldots, a_n, a_{n+1}) \in V(J')$$
Since $g_i(a)=0$, our hypothesis says $f(a)=0$. However, the last generator $(1-Yf)$ requires
$$1 - a_{n+1} f(a) = 0 ~~\Longrightarrow~ \text{implies}~ 1 - a_{n+1} \cdot 0 = 0 ~\Longrightarrow~ 1-0=0$$
a contradiction.
Therefore, $V(J') = \emptyset$.
\vspace{0.4cm}
Since $V(J')=\emptyset$, by the Weak Nullstellensatz/Zariski (\ref{zariski}),\\
\hspace*{2em} if $V(J')=\emptyset$ then $J'=(1)$, so $1 \in J'=(1)$.
Every element in an ideal is a linear combination of its generators: $J'$ is generated by $\{ g_1, \ldots, g_m, 1-Yf \}$
$$\Longrightarrow~ \forall j \in J',~~ j=(\sum \text{(polynomial)} g_i) + \text{(polynomial)} \cdot (1 - Yf)$$
which, since $1 \in J'$,
$$1= \left( \sum_{i=1}^m p_i(X,Y) g_i(X) \right) + q(X,Y) \cdot (1 - Y f(X))$$
substitute $Y=1/f$,
$$1= \left( \sum_{i=1}^m p_i(X,\frac{1}{f}) g_i(X) \right) + q(X,\frac{1}{f}) \cdot \underbrace{(1 - \frac{1}{f} f(X))}_{0}$$
thus
$$1= \sum_{i=1}^m p_i(X,\frac{1}{f}) g_i(X)$$
multiply by $f^n$,
$$f^n= \sum_{i=1}^m A_i(X) g_i(X)$$
thus $f^n$ is a linear combination of $g_i$.\\
Thus $f^n \in J$, so $f \in rad~J$.
\end{enumerate}
\end{proof}
\newpage \newpage
\section{Exercises} \section{Exercises}