diff --git a/commutative-algebra-notes.pdf b/commutative-algebra-notes.pdf index 3491313..a82e2eb 100644 Binary files a/commutative-algebra-notes.pdf and b/commutative-algebra-notes.pdf differ diff --git a/commutative-algebra-notes.tex b/commutative-algebra-notes.tex index 503301d..29771d4 100644 --- a/commutative-algebra-notes.tex +++ b/commutative-algebra-notes.tex @@ -1338,7 +1338,7 @@ Recall: a $K$-algebra $A$ is fingen over $K$ if $A=K[y_1, \ldots, y_n]$ for some thus there exists inverse in $A$, so $A$ is a field too. \end{proof} -\begin{thm}{R.4.10}[Weak Nullstellensatz - Zariski's lemma] +\begin{thm}{R.4.10}[Weak Nullstellensatz - Zariski's lemma] \label{zariski} let $k$ a field, $K$ a $k$-algebra which \begin{enumerate} \item is finitely generated as a $k$-algebra @@ -1372,6 +1372,42 @@ Recall: a $K$-algebra $A$ is fingen over $K$ if $A=K[y_1, \ldots, y_n]$ for some \end{proof} +\vspace{1cm} + +\section{Nullstellensatz} + +Note: for $k$ a field, $k[X_1, \ldots, X_n]$, $m$ maximal ideal; the residue field $K=k[X_1, \ldots, X_n]/m$ satisfies the Zariski's lemma (\ref{zariski}), thus $K$ is a finite algebraic extension of $k$. + +\vspace{0.3cm} +\begin{cor}{5.2} \label{5.2} + $k$ algebraically closed. Then every maximal ideal of $A = k[X_1, \ldots, + X_n]$ is of the form + $$m = (X_1 - a_1, \ldots, X_n -a_n),~~ a_i \in k$$ + + The map $k[X_1, \ldots, X_n] \longrightarrow k[X_1, \ldots, X_n]/m=k$ is the natural evaluation map $f(X_1, \ldots, X_n) \longmapsto f(a_1, \ldots, a_n)$. + + Thus + \begin{align*} + k^n &\longleftrightarrow m-Spec A\\ + (a_1, \ldots, a_n) &\longleftrightarrow f(a_1, \ldots, a_n) + \end{align*} +\end{cor} +\begin{proof} + let $m \subset k[X_1, \ldots, X_n]$ be a maximal ideal. + + By fundamental property of maximal ideals, $K=A/m$ is a field. + + Since $A$ is a fingen $k$-algebra (generated by $X_1, \ldots, X_n$), then $K=A/m$ is also a fingen $k$-algebra, generated by residues $x_i' = x_i +m$. + + By Zariski's lemma (\ref{zariski}), $K=A/m$ is algeraic over $k$. + + Since by hypothesis $k$ is algebraically closed, it has no proper algebraic extensions\\ + \hspace*{2em} $\Longrightarrow~~ K=k~~ \Longrightarrow~~ k \cong A/m$. + + So, $\forall x_i \in k$, its image in the quotient field $A/m$ must be an element of $k$. + $$\Longrightarrow x_i'=a_i \in k, ~\forall i \in [n]$$ + $$\Longrightarrow x_i - a_i \in m$$ +\end{proof} \newpage