port notes on A-algebras & Noether normalization & integral closures (#3)

* port notes on A-algebras & integral elems

* add R.4.3's proof & 4.4

* add Noether normalization proof
This commit is contained in:
2026-01-02 19:33:26 +01:00
committed by GitHub
parent 8967b2dcc6
commit dfd49d1571
5 changed files with 251 additions and 29 deletions

View File

@@ -517,12 +517,12 @@
Note that $HN = \{ hn : h\in H, n\in N \}$. Let $h_1 n_1, h_2 n_2 \in HN$.
Since $N$ normal $\Longrightarrow~ h_2^{-1} n_1 h_2 \in N$, so
$$(h_1 n_1)(h_2 n_2) = h_1 h_2 (h_2^{-1} n_1 h_2) \in HN$$
$$(h_1 n_1)(h_2 n_2) = h_1 h_2 (h_2^{-1} n_1 h_2) \cdot n_2 \in HN$$
[Recall: since $N \triangleleft G$, $gN=Ng ~\forall g \in G$ $\Longrightarrow gn=n'g$ for some $n' \in N$.]
To see that $(hn)^{-1} \in HN$:\\
since $(hn)^{-1} = n^{-1} h^{-1} = h^{-1} (h n^{-1} h^{-1})$, thus $(hn)^{-1} \in HN$.
since $(hn)^{-1} = h^{-1} n^{-1} = h^{-1} (h n^{-1} h^{-1})$, thus $(hn)^{-1} \in HN$.
Thus $HN \subseteq G$.