mirror of
https://github.com/arnaucube/math.git
synced 2026-01-11 08:21:31 +01:00
port notes on A-algebras & Noether normalization & integral closures (#3)
* port notes on A-algebras & integral elems * add R.4.3's proof & 4.4 * add Noether normalization proof
This commit is contained in:
@@ -517,12 +517,12 @@
|
||||
Note that $HN = \{ hn : h\in H, n\in N \}$. Let $h_1 n_1, h_2 n_2 \in HN$.
|
||||
|
||||
Since $N$ normal $\Longrightarrow~ h_2^{-1} n_1 h_2 \in N$, so
|
||||
$$(h_1 n_1)(h_2 n_2) = h_1 h_2 (h_2^{-1} n_1 h_2) \in HN$$
|
||||
$$(h_1 n_1)(h_2 n_2) = h_1 h_2 (h_2^{-1} n_1 h_2) \cdot n_2 \in HN$$
|
||||
|
||||
[Recall: since $N \triangleleft G$, $gN=Ng ~\forall g \in G$ $\Longrightarrow gn=n'g$ for some $n' \in N$.]
|
||||
|
||||
To see that $(hn)^{-1} \in HN$:\\
|
||||
since $(hn)^{-1} = n^{-1} h^{-1} = h^{-1} (h n^{-1} h^{-1})$, thus $(hn)^{-1} \in HN$.
|
||||
since $(hn)^{-1} = h^{-1} n^{-1} = h^{-1} (h n^{-1} h^{-1})$, thus $(hn)^{-1} \in HN$.
|
||||
|
||||
Thus $HN \subseteq G$.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user