|
|
@ -0,0 +1,62 @@ |
|
|
|
# Chinese Remainder Theorem |
|
|
|
def crt(a_i, m_i, M): |
|
|
|
if len(a_i)!=len(m_i): |
|
|
|
raise Exception("error, a_i and m_i must be of the same length") |
|
|
|
|
|
|
|
x = 0 |
|
|
|
for i in range(len(a_i)): |
|
|
|
M_i = M/m_i[i] |
|
|
|
y_i = Integer(mod(M_i^-1, m_i[i])) |
|
|
|
x = x + a_i[i] * M_i * y_i |
|
|
|
return mod(x, M) |
|
|
|
|
|
|
|
# gcd, using Binary Euclidean algorithm |
|
|
|
def gcd(a, b): |
|
|
|
g=1 |
|
|
|
# random_elementove powers of two from the gcd |
|
|
|
while mod(a, 2)==0 and mod(b, 2)==0: |
|
|
|
a=a/2 |
|
|
|
b=b/2 |
|
|
|
g=2*g |
|
|
|
# at least one of a and b is now odd |
|
|
|
while a!=0: |
|
|
|
while mod(a, 2)==0: |
|
|
|
a=a/2 |
|
|
|
while mod(b, 2)==0: |
|
|
|
b=b/2 |
|
|
|
# now both a and b are odd |
|
|
|
if a>=b: |
|
|
|
a = (a-b)/2 |
|
|
|
else: |
|
|
|
b = (b-a)/2 |
|
|
|
|
|
|
|
return g*b |
|
|
|
|
|
|
|
# Extended Euclidean algorithm |
|
|
|
# Inputs: a, b |
|
|
|
# Outputs: r, x, y, such that r = gcd(a, b) = x*a + y*b |
|
|
|
def egcd(a, b): |
|
|
|
s=0 |
|
|
|
s_=1 |
|
|
|
t=1 |
|
|
|
t_=0 |
|
|
|
r=b |
|
|
|
r_=a |
|
|
|
while r!=0: |
|
|
|
q = r_ // r |
|
|
|
(r_,r) = (r,r_ - q*r) |
|
|
|
(s_,s) = (s,s_ - q*s) |
|
|
|
(t_,t) = (t,t_ - q*t) |
|
|
|
|
|
|
|
d = r_ |
|
|
|
x = s_ |
|
|
|
y = t_ |
|
|
|
|
|
|
|
return d, x, y |
|
|
|
|
|
|
|
# Inverse modulo N, using the Extended Euclidean algorithm |
|
|
|
def inv_mod(a, N): |
|
|
|
g, x, y = egcd(a, N) |
|
|
|
if g != 1: |
|
|
|
raise Exception("inv_mod err, g!=1") |
|
|
|
return mod(x, N) |