Browse Source

Add CRT, gcd, extended gcd, inverse modulo N

Add CRT (Chinese Remainder Theorem), gcd (using Binary Euclidean
algorithm), extended gcd, inverse modulo N (using egcd)
master
arnaucube 2 years ago
parent
commit
e14b94a8db
2 changed files with 89 additions and 0 deletions
  1. +62
    -0
      number-theory.sage
  2. +27
    -0
      number-theory_test.sage

+ 62
- 0
number-theory.sage

@ -0,0 +1,62 @@
# Chinese Remainder Theorem
def crt(a_i, m_i, M):
if len(a_i)!=len(m_i):
raise Exception("error, a_i and m_i must be of the same length")
x = 0
for i in range(len(a_i)):
M_i = M/m_i[i]
y_i = Integer(mod(M_i^-1, m_i[i]))
x = x + a_i[i] * M_i * y_i
return mod(x, M)
# gcd, using Binary Euclidean algorithm
def gcd(a, b):
g=1
# random_elementove powers of two from the gcd
while mod(a, 2)==0 and mod(b, 2)==0:
a=a/2
b=b/2
g=2*g
# at least one of a and b is now odd
while a!=0:
while mod(a, 2)==0:
a=a/2
while mod(b, 2)==0:
b=b/2
# now both a and b are odd
if a>=b:
a = (a-b)/2
else:
b = (b-a)/2
return g*b
# Extended Euclidean algorithm
# Inputs: a, b
# Outputs: r, x, y, such that r = gcd(a, b) = x*a + y*b
def egcd(a, b):
s=0
s_=1
t=1
t_=0
r=b
r_=a
while r!=0:
q = r_ // r
(r_,r) = (r,r_ - q*r)
(s_,s) = (s,s_ - q*s)
(t_,t) = (t,t_ - q*t)
d = r_
x = s_
y = t_
return d, x, y
# Inverse modulo N, using the Extended Euclidean algorithm
def inv_mod(a, N):
g, x, y = egcd(a, N)
if g != 1:
raise Exception("inv_mod err, g!=1")
return mod(x, N)

+ 27
- 0
number-theory_test.sage

@ -0,0 +1,27 @@
load("number-theory.sage")
#####
# Chinese Remainder Theorem tests
a_i = [5, 3, 10]
m_i = [7, 11, 13]
M = 1001
assert crt(a_i, m_i, M) == 894
a_i = [3, 8]
m_i = [13, 17]
M = 221
assert crt(a_i, m_i, M) == 42
#####
# gcd, using Binary Euclidean algorithm tests
assert gcd(21, 12) == 3
assert gcd(1_426_668_559_730, 810_653_094_756) == 1_417_082
#####
# Extended Euclidean algorithm tests
assert egcd(7, 19) == (1, -8, 3)
#####
# Inverse modulo N tests
assert inv_mod(7, 19) == 11

Loading…
Cancel
Save