Browse Source

Add init seminar exercises

master
arnaucube 2 years ago
parent
commit
e69a4b792f
2 changed files with 105 additions and 0 deletions
  1. BIN
      seminarexercises.pdf
  2. +105
    -0
      seminarexercises.tex

BIN
seminarexercises.pdf


+ 105
- 0
seminarexercises.tex

@ -0,0 +1,105 @@
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{enumerate}
\usepackage{hyperref}
\hypersetup{
colorlinks,
citecolor=black,
filecolor=black,
linkcolor=black,
urlcolor=black
}
% custom solution environment to set custom numbers
\theoremstyle{definition}
\newtheorem{innersolution}{Solution}
\newenvironment{solution}[1]
{\renewcommand\theinnersolution{#1}\innersolution}
{\endinnersolution}
\title{Seminar exercises}
\author{ }
\date{February 2022}
\begin{document}
\maketitle
\begin{solution}{1.9}\
\begin{enumerate}[1.]
\item Let $f(a) = u$, then $g(f(a)) = g(u)$, so $g \circ f$ is a function.
\item We can see that composition of functions is associative as follows:\\
we know that $[ f \circ g](x) = f(g(x)), \forall x \in A$,\\
so,
$$(h \circ [g \circ f])(x) = h([g \circ f](x)) = h(g(f(x)))$$
\\
and
$$([h \circ g] \circ f)(x) = [h \circ g](f(x)) = h(g(f(x)))$$
Then, we can see that $$h \circ (g \circ f) = h(g(f(x))) = (h \circ g) \circ f$$
\end{enumerate}
\end{solution}
\begin{solution}{1.28}\
The quotient set of the equivalence relation in Example 1.27 is
$$
X / \sim = \{[(x_0,y_0)], [(x_1, y_1)], \ldots, [(x_n, y_n)]\}
$$
Yes, it is isomorphic to the cosets of the \emph{nth} roots of unity, which are $\mathbb{G}_n = \{w_k\}^{n-1}_{k=0}$, where $w_k=e^{\frac{2 \pi i}{n}}$.
\end{solution}
\begin{solution}{2.2}\
To prove that the inverse $x^{-1}$ is unique, assume $x^{-1}$ and $\tilde{x}^{-1}$ are two inverses of $x$.\\
By the definition of the inverse, we know that $x \cdot x^{-1} = e$. And by the definition of the unit element, we know that $x \cdot e = x$.\\
Then, $$x^{-1} \cdot (x \cdot \tilde{x}^{-1}) = x^{-1} \cdot e = x^{-1}$$
and $$(x^{-1} \cdot x) \cdot \tilde{x}^{-1} = e \cdot \tilde{x}^{-1} = \tilde{x}^{-1}$$
By associativity property of groups, we know that
$$x^{-1} \cdot (x \cdot \tilde{x}^{-1}) = (x^{-1} \cdot x) \cdot \tilde{x}^{-1}$$
so, $$x^{-1} \cdot e = e \cdot \tilde{x}^{-1}$$
which is $$x^{-1} = \tilde{x}^{-1}$$
So, for any $x \in G$, the inverse $x^{-1}$ is unique.
\end{solution}
\begin{solution}{2.5}\
Let $\alpha = (\begin{smallmatrix}1 & 2 & 3\\ 1 & 3 & 2\end{smallmatrix})$, $\beta = (\begin{smallmatrix}1 & 2 & 3\\ 3 & 1 & 2\end{smallmatrix})$, then,
$$
\alpha \cdot \beta =
(\begin{smallmatrix}1 & 2 & 3\\ 1 & 3 & 2\end{smallmatrix})
\cdot (\begin{smallmatrix}1 & 2 & 3\\ 3 & 1 & 2\end{smallmatrix})
= (\begin{smallmatrix}1 & 2 & 3\\ 3 & 2 & 1\end{smallmatrix})
$$
and
$$
\beta \cdot \alpha =
(\begin{smallmatrix}1 & 2 & 3\\ 3 & 1 & 2\end{smallmatrix}) \cdot
(\begin{smallmatrix}1 & 2 & 3\\ 1 & 3 & 2\end{smallmatrix})
= (\begin{smallmatrix}1 & 2 & 3\\ 2 & 1 & 3\end{smallmatrix})
$$
So, we can see that
$$
(\begin{smallmatrix}1 & 2 & 3\\ 3 & 2 & 1\end{smallmatrix})
\neq
(\begin{smallmatrix}1 & 2 & 3\\ 2 & 1 & 3\end{smallmatrix})
$$
so, $\alpha \cdot \beta \neq \beta \cdot \alpha$.
\end{solution}
\begin{solution}{2.26}\
We want to prove that $f: G \rightarrow H$ is a \emph{monomorphism} iff $\ker f=\{e\}$.\\
We know that $f$ is a \emph{monomorphism} (\emph{injective}) iff $\forall a, b \in G$, $f(a) = f(b) \Rightarrow a = b$.\\
Let $a, b \in G$ such that $f(a)=f(b)$. Then
$$f(a) f(b)^{-1} = f(b) (f(b))^{-1} = e$$
$$f(a) f(b^{-1}) = e$$
$$f(ab^{-1}) = e$$
as $\ker f = \{e\}$, then we see that $ab^{-1}=e$, so $a=b$. Thus $f$ is a \emph{monomorphism}.
\end{solution}
\end{document}

Loading…
Cancel
Save