mirror of
https://github.com/arnaucube/math.git
synced 2026-01-09 23:41:33 +01:00
Add init seminar exercises
This commit is contained in:
BIN
seminarexercises.pdf
Normal file
BIN
seminarexercises.pdf
Normal file
Binary file not shown.
105
seminarexercises.tex
Normal file
105
seminarexercises.tex
Normal file
@@ -0,0 +1,105 @@
|
||||
\documentclass{article}
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage{amsfonts}
|
||||
\usepackage{amsthm}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{enumerate}
|
||||
\usepackage{hyperref}
|
||||
\hypersetup{
|
||||
colorlinks,
|
||||
citecolor=black,
|
||||
filecolor=black,
|
||||
linkcolor=black,
|
||||
urlcolor=black
|
||||
}
|
||||
|
||||
% custom solution environment to set custom numbers
|
||||
\theoremstyle{definition}
|
||||
\newtheorem{innersolution}{Solution}
|
||||
\newenvironment{solution}[1]
|
||||
{\renewcommand\theinnersolution{#1}\innersolution}
|
||||
{\endinnersolution}
|
||||
|
||||
\title{Seminar exercises}
|
||||
\author{ }
|
||||
\date{February 2022}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
\begin{solution}{1.9}\
|
||||
\begin{enumerate}[1.]
|
||||
\item Let $f(a) = u$, then $g(f(a)) = g(u)$, so $g \circ f$ is a function.
|
||||
\item We can see that composition of functions is associative as follows:\\
|
||||
we know that $[ f \circ g](x) = f(g(x)), \forall x \in A$,\\
|
||||
so,
|
||||
$$(h \circ [g \circ f])(x) = h([g \circ f](x)) = h(g(f(x)))$$
|
||||
\\
|
||||
and
|
||||
$$([h \circ g] \circ f)(x) = [h \circ g](f(x)) = h(g(f(x)))$$
|
||||
Then, we can see that $$h \circ (g \circ f) = h(g(f(x))) = (h \circ g) \circ f$$
|
||||
\end{enumerate}
|
||||
\end{solution}
|
||||
|
||||
\begin{solution}{1.28}\
|
||||
|
||||
The quotient set of the equivalence relation in Example 1.27 is
|
||||
$$
|
||||
X / \sim = \{[(x_0,y_0)], [(x_1, y_1)], \ldots, [(x_n, y_n)]\}
|
||||
$$
|
||||
Yes, it is isomorphic to the cosets of the \emph{nth} roots of unity, which are $\mathbb{G}_n = \{w_k\}^{n-1}_{k=0}$, where $w_k=e^{\frac{2 \pi i}{n}}$.
|
||||
\end{solution}
|
||||
|
||||
\begin{solution}{2.2}\
|
||||
|
||||
To prove that the inverse $x^{-1}$ is unique, assume $x^{-1}$ and $\tilde{x}^{-1}$ are two inverses of $x$.\\
|
||||
By the definition of the inverse, we know that $x \cdot x^{-1} = e$. And by the definition of the unit element, we know that $x \cdot e = x$.\\
|
||||
Then, $$x^{-1} \cdot (x \cdot \tilde{x}^{-1}) = x^{-1} \cdot e = x^{-1}$$
|
||||
and $$(x^{-1} \cdot x) \cdot \tilde{x}^{-1} = e \cdot \tilde{x}^{-1} = \tilde{x}^{-1}$$
|
||||
By associativity property of groups, we know that
|
||||
$$x^{-1} \cdot (x \cdot \tilde{x}^{-1}) = (x^{-1} \cdot x) \cdot \tilde{x}^{-1}$$
|
||||
so, $$x^{-1} \cdot e = e \cdot \tilde{x}^{-1}$$
|
||||
which is $$x^{-1} = \tilde{x}^{-1}$$
|
||||
So, for any $x \in G$, the inverse $x^{-1}$ is unique.
|
||||
\end{solution}
|
||||
|
||||
\begin{solution}{2.5}\
|
||||
|
||||
Let $\alpha = (\begin{smallmatrix}1 & 2 & 3\\ 1 & 3 & 2\end{smallmatrix})$, $\beta = (\begin{smallmatrix}1 & 2 & 3\\ 3 & 1 & 2\end{smallmatrix})$, then,
|
||||
$$
|
||||
\alpha \cdot \beta =
|
||||
(\begin{smallmatrix}1 & 2 & 3\\ 1 & 3 & 2\end{smallmatrix})
|
||||
\cdot (\begin{smallmatrix}1 & 2 & 3\\ 3 & 1 & 2\end{smallmatrix})
|
||||
= (\begin{smallmatrix}1 & 2 & 3\\ 3 & 2 & 1\end{smallmatrix})
|
||||
$$
|
||||
|
||||
and
|
||||
$$
|
||||
\beta \cdot \alpha =
|
||||
(\begin{smallmatrix}1 & 2 & 3\\ 3 & 1 & 2\end{smallmatrix}) \cdot
|
||||
(\begin{smallmatrix}1 & 2 & 3\\ 1 & 3 & 2\end{smallmatrix})
|
||||
= (\begin{smallmatrix}1 & 2 & 3\\ 2 & 1 & 3\end{smallmatrix})
|
||||
$$
|
||||
|
||||
So, we can see that
|
||||
$$
|
||||
(\begin{smallmatrix}1 & 2 & 3\\ 3 & 2 & 1\end{smallmatrix})
|
||||
\neq
|
||||
(\begin{smallmatrix}1 & 2 & 3\\ 2 & 1 & 3\end{smallmatrix})
|
||||
$$
|
||||
|
||||
so, $\alpha \cdot \beta \neq \beta \cdot \alpha$.
|
||||
\end{solution}
|
||||
|
||||
\begin{solution}{2.26}\
|
||||
|
||||
We want to prove that $f: G \rightarrow H$ is a \emph{monomorphism} iff $\ker f=\{e\}$.\\
|
||||
We know that $f$ is a \emph{monomorphism} (\emph{injective}) iff $\forall a, b \in G$, $f(a) = f(b) \Rightarrow a = b$.\\
|
||||
Let $a, b \in G$ such that $f(a)=f(b)$. Then
|
||||
$$f(a) f(b)^{-1} = f(b) (f(b))^{-1} = e$$
|
||||
$$f(a) f(b^{-1}) = e$$
|
||||
$$f(ab^{-1}) = e$$
|
||||
as $\ker f = \{e\}$, then we see that $ab^{-1}=e$, so $a=b$. Thus $f$ is a \emph{monomorphism}.
|
||||
\end{solution}
|
||||
|
||||
\end{document}
|
||||
Reference in New Issue
Block a user