Browse Source

add Noetherian exercises 3.3 & 3.4

comm-alg
arnaucube 3 days ago
parent
commit
f0f54c8f41
2 changed files with 69 additions and 1 deletions
  1. BIN
      commutative-algebra-notes.pdf
  2. +69
    -1
      commutative-algebra-notes.tex

BIN
commutative-algebra-notes.pdf


+ 69
- 1
commutative-algebra-notes.tex

@ -80,7 +80,7 @@
\maketitle
\begin{abstract}
Notes taken while studying Commutative Algebra, mostly from Atiyah \& MacDonald book \cite{am} and Reid's book \cite{reid}.
Notes taken while studying Commutative Algebra, mostly from Atiyah \& MacDonald book \cite{am} and Reid's book \cite{reid}. For the exercises, I follow the assignments listed at \cite{mit-course}.
Usually while reading books and papers I take handwritten notes in a notebook, this document contains some of them re-written to $LaTeX$.
@ -1343,6 +1343,74 @@ $0 \longrightarrow L \stackrel{\alpha}{\longrightarrow} M \stackrel{\beta}{\long
while having $M_1 \neq M_2$.
\end{proof}
\begin{ex}{R.3.3}
Let $A$ a ring, $I_1, \ldots, I_k$ ideals such that each $A/I_i$ is a Noetherian ring.
Prove that $\bigoplus A/I_i$ is a Noetherian $A$-module, and deduce that if $\bigcap I_i = 0$ then $A$ is also Noetherian.
\end{ex}
\begin{proof}
\begin{enumerate}[i.]
\item by Corollary \ref{R.3.5} (i), if $M_i$ Noetherian modules, then $\bigoplus M_i$ is Noetherian.
$\Longrightarrow$ thus $\bigoplus A/I_i$ is Noetherian.
\item Take the canoncial homomorphism
$$\phi: A \longrightarrow \bigoplus_{i=1}^n A/ I_i$$
by $\phi(a) = (a+I_1, a+I_2, \ldots, a+I_n)$.
$\phi$ is injective: $ker(\phi)= \{ a \in A | a \in I_i \forall i \}$.
Since we're given $\cap I_i = 0$, then $ker(\phi)=\cap I_i$, and $\phi$ is injective.
Thus, $\phi$ is the isomorphism $A \cong im(\phi)$, where $im(\phi)$ is an $A$-submodule of $\bigoplus A/I_i$.
We know that any submodule of a Noetherian module is Noetherian, thus, since
\begin{itemize}
\item $A/I_i$ is Noetherian by hypothesis of the exercise
\item $A \cong im(\phi)$
\item $im(\phi)$ is an $A$-submodule of $\bigoplus A/I_i$
\end{itemize}
then, $A$ is Noetherian.
\end{enumerate}
\end{proof}
\begin{ex}{R.3.4}
Prove that if A is a Noetherian ring and M a finite A-module, then there
exists an exact sequence $A^q \stackrel{\alpha}{\longrightarrow} A^p \stackrel{\beta}{\longrightarrow} M \longrightarrow 0$.
That is, M has a presentation as an A-module in terms of finitely many generators and relations.
\end{ex}
\begin{proof}
since $M$ fingen $~\Longrightarrow~$ generators $\{m_1, \ldots, m_2 \} \subseteq M$ span $M$.
Let $\beta$ be a surjective $A$-linear map, which forms a free $A$-module of rank $p$ onto $M$:
\begin{align*}
\beta: A^p &\longrightarrow M\\
(a_1, \ldots, a_p) &\longmapsto \sum_{i=1}^p a_i m_i
\end{align*}
Let $K=ker(\beta)$. By the 1st Isomorphism Theorem,
$$M \cong A^p / K$$
Since $A$ is a Noetherian ring, then every free $A$-module of finite rank (eg. $A^p$) is a Noetherian module.
Every submodule of a Noetherian module is fingen.
$\Longrightarrow~$ since $K \subseteq A^p, ~\Longrightarrow~ K ~~(=ker(\beta))$ is fingen.
Since $K$ fingen, let $\{k_1, \ldots, l_q\}$ be generators of $K$.
Define $\psi: A^q \longrightarrow K$.
Compose it with the inclusion map $i: K \longrightarrow A^p$,
$$\alpha = i \circ \psi:~ A^q \longrightarrow A^p$$
So we have the whole sequence $A^q \stackrel{\alpha}{\longrightarrow} A^p \stackrel{\beta}{\longrightarrow} M \longrightarrow 0$, where
\begin{itemize}
\item $\beta$ is surjective
\item $im(\alpha)=ker(\beta)$
\end{itemize}
so that it is a exact sequence, thus, $M$ has a finite presentation.
\end{proof}
\bibliographystyle{unsrt}
\bibliography{commutative-algebra-notes.bib}

Loading…
Cancel
Save