Browse Source

add initial HyperNova notes

master
arnaucube 1 year ago
parent
commit
fd810298c9
4 changed files with 158 additions and 0 deletions
  1. +1
    -0
      README.md
  2. BIN
      notes_hypernova.pdf
  3. +140
    -0
      notes_hypernova.tex
  4. +17
    -0
      paper-notes.bib

+ 1
- 0
README.md

@ -14,5 +14,6 @@ Notes, code and documents done while reading books and papers.
- [Notes on FRI](notes_fri.pdf)
- [Notes on Spartan](notes_spartan.pdf)
- [Notes on Nova](notes_nova.pdf)
- [Notes on HyperNova](notes_hypernova.pdf)
Also some Sage implementations can be found in the `*.sage` files of this repo.

BIN
notes_hypernova.pdf


+ 140
- 0
notes_hypernova.tex

@ -0,0 +1,140 @@
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{mathtools}
\usepackage{enumerate}
\usepackage{hyperref}
\usepackage{xcolor}
\usepackage{pgf-umlsd} % diagrams
\usepackage{centernot}
% prevent warnings of underfull \hbox:
\usepackage{etoolbox}
\apptocmd{\sloppy}{\hbadness 4000\relax}{}{}
\theoremstyle{definition}
\newtheorem{definition}{Def}[section]
\newtheorem{theorem}[definition]{Thm}
% custom lemma environment to set custom numbers
\newtheorem{innerlemma}{Lemma}
\newenvironment{lemma}[1]
{\renewcommand\theinnerlemma{#1}\innerlemma}
{\endinnerlemma}
\title{Notes on HyperNova}
\author{arnaucube}
\date{May 2023}
\begin{document}
\maketitle
\begin{abstract}
Notes taken while reading about Spartan \cite{cryptoeprint:2023/573}, \cite{cryptoeprint:2023/552}.
Usually while reading papers I take handwritten notes, this document contains some of them re-written to $LaTeX$.
The notes are not complete, don't include all the steps neither all the proofs.
\end{abstract}
\tableofcontents
\section{CCS}
\subsection{R1CS to CCS overview}
\begin{itemize}
\item[] R1CS instance: $S_{R1CS} = (m, n, N, l, A, B, C)$
\item[] CCS instance: $S_{CCS} = (m, n, N, l, t, q, d, M, S, c)$
\item[] R1CS-to-CCS parameters:\\
$n=n,~ m=m,~ N=N,~ l=l,~ t=3,~ q=2,~ d=2$\\
$M=\{A,B,C\}$, $S=\{\{0,~1\},~ \{2\}\}$, $c=\{1,-1\}$
\end{itemize}
Then, we can see that the CCS relation:
$$\sum_{i=0}^{q-1} c_i \cdot \bigcirc_{j \in S_i} M_j \cdot z ==0$$
where $z=(w, 1, x) \in \mathbb{F}^n$.
In our R1CS-to-CCS parameters is equivalent to
\begin{align*}
&c_0 \cdot ( (M_0 z) \circ (M_1 z) ) + c_1 \cdot (M_2 z) ==0\\
\Longrightarrow &1 \cdot ( (A z) \circ (B z) ) + (-1) \cdot (C z) ==0\\
\Longrightarrow &( (A z) \circ (B z) ) - (C z) ==0
\end{align*}
which is equivalent to the R1CS relation: $Az \circ Bz == Cz$
An example of the conversion from R1CS to CCS implemented in SageMath can be found at\\
\href{https://github.com/arnaucube/math/blob/master/r1cs-ccs.sage}{https://github.com/arnaucube/math/blob/master/r1cs-ccs.sage}.
\subsection{Committed CCS}
$R_{CCCS}$ instance: $(C, \mathsf{x})$, where $C$ is a commitment to a multilinear polynomial in $s'-1$ variables.
Sat if:
\begin{enumerate}[i.]
\item $\text{Commit}(pp, \widetilde{w}) = C$
\item $\sum_{i=1}^q c_i \cdot \left( \prod_{j \in S_i} \left( \sum_{y \in \{0,1\}^{\log m}} \widetilde{M}_j(x, y) \cdot \widetilde{z}(y) \right) \right)$\\
where $\widetilde{z}(y) = \widetilde{(w, 1, \mathsf{x})}(x) ~\forall x \in \{0, 1\}^{s'}$
\end{enumerate}
\subsection{Linearized Committed CCS}
$R_{LCCCS}$ instance: $(C, u, \mathsf{x}, r, v_1, \ldots, v_t)$, where $C$ is a commitment to a multilinear polynomial in $s'-1$ variables, and $u \in \mathbb{F},~ \mathsf{x} \in \mathbb{F}^l,~ r \in \mathbb{F}^s,~ v_i \in \mathbb{F} ~\forall i \in [t]$.
Sat if:
\begin{enumerate}[i.]
\item $\text{Commit}(pp, \widetilde{w}) = C$
\item $\forall i \in [t],~ v_i = \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_i(r, y) \cdot \widetilde{z}(y)$\\
where $\widetilde{z}(y) = \widetilde{(w, u, \mathsf{x})}(x) ~\forall x \in \{0, 1\}^{s'}$
\end{enumerate}
\section{Multifolding Scheme for CCS}
Recall sum-check protocol:\\
\underline{$C \leftarrow <P, V(r)>(g, l, d, T)$}:\\ % TODO use proper <, >
$T=\sum_{x_1 \in \{0,1\}} \sum_{x_2 \in \{0,1\}} \cdots \sum_{x_l \in \{0,1\}} g(x_1, x_2, \ldots, x_l)$
$l$-variate polynomial g, degree $\leq d$ in each variable.
let $s= \log m,~ s'= \log n$.
\begin{enumerate}
\item $V \rightarrow P: \gamma \in^R \mathbb{F},~ \beta \in^R \mathbb{F}^s$
\item $V: r_x' \in^R \mathbb{F}^s$
\item $V \leftrightarrow P$: sum-check protocol:\\
$$c \leftarrow <P, V(r_x')>(g, s, d+1, \sum_{j \in [t]} \gamma^j \cdot v_j)$$
where:\\
\begin{align*}
g(x) &:= \left( \sum_{j \in [t]} \gamma^j \cdot L_j(x) \right) + \gamma^{t+1} \cdot Q(x)\\
L_j(x) &:= \widetilde{eq}(r_x, x) \cdot \left( \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_1(y) \right)\\
Q(x) &:= \widetilde{eq}(\beta, x) \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \left( \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_2(y) \right) \right)
\end{align*}
\item $P \rightarrow V$: $\left( (\sigma_1, \ldots, \sigma_t), (\theta_1, \ldots, \theta_t) \right)$
where
$$\sigma_j = \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_1(y)$$
$$\theta_j = \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_2(y)$$
\item V: $e_1 \leftarrow \widetilde{eq}(r_x, r_x')$, $e_2 \leftarrow \widetilde{eq}(\beta, r_x')$\\
check:
$$c = \left( \sum_{j \in [t]} \gamma^j e_1 \sigma_j + \gamma^{t+1} e_2 \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \sigma \right) \right)$$
\item $V \rightarrow P: \rho \in^R \mathbb{F}$
\item $V, P$: output the folded LCCCS instance $(C', u', \mathsf{x}', r_x', v_1', \ldots, v_t')$, where $\forall i \in [t]$:
\begin{align*}
C' &\leftarrow C_1 + \rho \cdot C_2\\
u' &\leftarrow u + \rho \cdot 1\\
\mathsf{x}' &\leftarrow \mathsf{x}_1 + \rho \cdot \mathsf{x}_2\\
v_i' &\leftarrow \sigma_i + \rho \cdot \theta_i
\end{align*}
\item $P$: output folded witness: $\widetilde{w}' \leftarrow \widetilde{w}_1 + \rho \cdot \widetilde{w}_2$.
\end{enumerate}
\bibliography{paper-notes.bib}
\bibliographystyle{unsrt}
\end{document}

+ 17
- 0
paper-notes.bib

@ -109,3 +109,20 @@
note = {\url{https://eprint.iacr.org/2019/550}},
url = {https://eprint.iacr.org/2019/550}
}
@misc{cryptoeprint:2023/552,
author = {Srinath Setty and Justin Thaler and Riad Wahby},
title = {Customizable constraint systems for succinct arguments},
howpublished = {Cryptology ePrint Archive, Paper 2023/552},
year = {2023},
note = {\url{https://eprint.iacr.org/2023/552}},
url = {https://eprint.iacr.org/2023/552}
}
@misc{cryptoeprint:2023/573,
author = {Abhiram Kothapalli and Srinath Setty},
title = {HyperNova: Recursive arguments for customizable constraint systems},
howpublished = {Cryptology ePrint Archive, Paper 2023/573},
year = {2023},
note = {\url{https://eprint.iacr.org/2023/573}},
url = {https://eprint.iacr.org/2023/573}
}

Loading…
Cancel
Save