|
|
@ -0,0 +1,140 @@ |
|
|
|
\documentclass{article} |
|
|
|
\usepackage[utf8]{inputenc} |
|
|
|
\usepackage{amsfonts} |
|
|
|
\usepackage{amsthm} |
|
|
|
\usepackage{amsmath} |
|
|
|
\usepackage{mathtools} |
|
|
|
\usepackage{enumerate} |
|
|
|
\usepackage{hyperref} |
|
|
|
\usepackage{xcolor} |
|
|
|
\usepackage{pgf-umlsd} % diagrams |
|
|
|
\usepackage{centernot} |
|
|
|
|
|
|
|
|
|
|
|
% prevent warnings of underfull \hbox: |
|
|
|
\usepackage{etoolbox} |
|
|
|
\apptocmd{\sloppy}{\hbadness 4000\relax}{}{} |
|
|
|
|
|
|
|
\theoremstyle{definition} |
|
|
|
\newtheorem{definition}{Def}[section] |
|
|
|
\newtheorem{theorem}[definition]{Thm} |
|
|
|
|
|
|
|
% custom lemma environment to set custom numbers |
|
|
|
\newtheorem{innerlemma}{Lemma} |
|
|
|
\newenvironment{lemma}[1] |
|
|
|
{\renewcommand\theinnerlemma{#1}\innerlemma} |
|
|
|
{\endinnerlemma} |
|
|
|
|
|
|
|
|
|
|
|
\title{Notes on HyperNova} |
|
|
|
\author{arnaucube} |
|
|
|
\date{May 2023} |
|
|
|
|
|
|
|
\begin{document} |
|
|
|
|
|
|
|
\maketitle |
|
|
|
|
|
|
|
\begin{abstract} |
|
|
|
Notes taken while reading about Spartan \cite{cryptoeprint:2023/573}, \cite{cryptoeprint:2023/552}. |
|
|
|
|
|
|
|
Usually while reading papers I take handwritten notes, this document contains some of them re-written to $LaTeX$. |
|
|
|
|
|
|
|
The notes are not complete, don't include all the steps neither all the proofs. |
|
|
|
\end{abstract} |
|
|
|
|
|
|
|
\tableofcontents |
|
|
|
|
|
|
|
|
|
|
|
\section{CCS} |
|
|
|
\subsection{R1CS to CCS overview} |
|
|
|
|
|
|
|
\begin{itemize} |
|
|
|
\item[] R1CS instance: $S_{R1CS} = (m, n, N, l, A, B, C)$ |
|
|
|
\item[] CCS instance: $S_{CCS} = (m, n, N, l, t, q, d, M, S, c)$ |
|
|
|
\item[] R1CS-to-CCS parameters:\\ |
|
|
|
$n=n,~ m=m,~ N=N,~ l=l,~ t=3,~ q=2,~ d=2$\\ |
|
|
|
$M=\{A,B,C\}$, $S=\{\{0,~1\},~ \{2\}\}$, $c=\{1,-1\}$ |
|
|
|
\end{itemize} |
|
|
|
|
|
|
|
Then, we can see that the CCS relation: |
|
|
|
$$\sum_{i=0}^{q-1} c_i \cdot \bigcirc_{j \in S_i} M_j \cdot z ==0$$ |
|
|
|
|
|
|
|
where $z=(w, 1, x) \in \mathbb{F}^n$. |
|
|
|
|
|
|
|
In our R1CS-to-CCS parameters is equivalent to |
|
|
|
|
|
|
|
\begin{align*} |
|
|
|
&c_0 \cdot ( (M_0 z) \circ (M_1 z) ) + c_1 \cdot (M_2 z) ==0\\ |
|
|
|
\Longrightarrow &1 \cdot ( (A z) \circ (B z) ) + (-1) \cdot (C z) ==0\\ |
|
|
|
\Longrightarrow &( (A z) \circ (B z) ) - (C z) ==0 |
|
|
|
\end{align*} |
|
|
|
|
|
|
|
which is equivalent to the R1CS relation: $Az \circ Bz == Cz$ |
|
|
|
|
|
|
|
An example of the conversion from R1CS to CCS implemented in SageMath can be found at\\ |
|
|
|
\href{https://github.com/arnaucube/math/blob/master/r1cs-ccs.sage}{https://github.com/arnaucube/math/blob/master/r1cs-ccs.sage}. |
|
|
|
|
|
|
|
\subsection{Committed CCS} |
|
|
|
$R_{CCCS}$ instance: $(C, \mathsf{x})$, where $C$ is a commitment to a multilinear polynomial in $s'-1$ variables. |
|
|
|
|
|
|
|
Sat if: |
|
|
|
\begin{enumerate}[i.] |
|
|
|
\item $\text{Commit}(pp, \widetilde{w}) = C$ |
|
|
|
\item $\sum_{i=1}^q c_i \cdot \left( \prod_{j \in S_i} \left( \sum_{y \in \{0,1\}^{\log m}} \widetilde{M}_j(x, y) \cdot \widetilde{z}(y) \right) \right)$\\ |
|
|
|
where $\widetilde{z}(y) = \widetilde{(w, 1, \mathsf{x})}(x) ~\forall x \in \{0, 1\}^{s'}$ |
|
|
|
\end{enumerate} |
|
|
|
|
|
|
|
|
|
|
|
\subsection{Linearized Committed CCS} |
|
|
|
$R_{LCCCS}$ instance: $(C, u, \mathsf{x}, r, v_1, \ldots, v_t)$, where $C$ is a commitment to a multilinear polynomial in $s'-1$ variables, and $u \in \mathbb{F},~ \mathsf{x} \in \mathbb{F}^l,~ r \in \mathbb{F}^s,~ v_i \in \mathbb{F} ~\forall i \in [t]$. |
|
|
|
|
|
|
|
Sat if: |
|
|
|
\begin{enumerate}[i.] |
|
|
|
\item $\text{Commit}(pp, \widetilde{w}) = C$ |
|
|
|
\item $\forall i \in [t],~ v_i = \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_i(r, y) \cdot \widetilde{z}(y)$\\ |
|
|
|
where $\widetilde{z}(y) = \widetilde{(w, u, \mathsf{x})}(x) ~\forall x \in \{0, 1\}^{s'}$ |
|
|
|
\end{enumerate} |
|
|
|
|
|
|
|
|
|
|
|
\section{Multifolding Scheme for CCS} |
|
|
|
Recall sum-check protocol:\\ |
|
|
|
\underline{$C \leftarrow <P, V(r)>(g, l, d, T)$}:\\ % TODO use proper <, > |
|
|
|
$T=\sum_{x_1 \in \{0,1\}} \sum_{x_2 \in \{0,1\}} \cdots \sum_{x_l \in \{0,1\}} g(x_1, x_2, \ldots, x_l)$ |
|
|
|
$l$-variate polynomial g, degree $\leq d$ in each variable. |
|
|
|
|
|
|
|
let $s= \log m,~ s'= \log n$. |
|
|
|
|
|
|
|
\begin{enumerate} |
|
|
|
\item $V \rightarrow P: \gamma \in^R \mathbb{F},~ \beta \in^R \mathbb{F}^s$ |
|
|
|
\item $V: r_x' \in^R \mathbb{F}^s$ |
|
|
|
\item $V \leftrightarrow P$: sum-check protocol:\\ |
|
|
|
$$c \leftarrow <P, V(r_x')>(g, s, d+1, \sum_{j \in [t]} \gamma^j \cdot v_j)$$ |
|
|
|
where:\\ |
|
|
|
\begin{align*} |
|
|
|
g(x) &:= \left( \sum_{j \in [t]} \gamma^j \cdot L_j(x) \right) + \gamma^{t+1} \cdot Q(x)\\ |
|
|
|
L_j(x) &:= \widetilde{eq}(r_x, x) \cdot \left( \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_1(y) \right)\\ |
|
|
|
Q(x) &:= \widetilde{eq}(\beta, x) \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \left( \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_2(y) \right) \right) |
|
|
|
\end{align*} |
|
|
|
\item $P \rightarrow V$: $\left( (\sigma_1, \ldots, \sigma_t), (\theta_1, \ldots, \theta_t) \right)$ |
|
|
|
where |
|
|
|
$$\sigma_j = \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_1(y)$$ |
|
|
|
$$\theta_j = \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_2(y)$$ |
|
|
|
\item V: $e_1 \leftarrow \widetilde{eq}(r_x, r_x')$, $e_2 \leftarrow \widetilde{eq}(\beta, r_x')$\\ |
|
|
|
check: |
|
|
|
$$c = \left( \sum_{j \in [t]} \gamma^j e_1 \sigma_j + \gamma^{t+1} e_2 \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \sigma \right) \right)$$ |
|
|
|
\item $V \rightarrow P: \rho \in^R \mathbb{F}$ |
|
|
|
\item $V, P$: output the folded LCCCS instance $(C', u', \mathsf{x}', r_x', v_1', \ldots, v_t')$, where $\forall i \in [t]$: |
|
|
|
\begin{align*} |
|
|
|
C' &\leftarrow C_1 + \rho \cdot C_2\\ |
|
|
|
u' &\leftarrow u + \rho \cdot 1\\ |
|
|
|
\mathsf{x}' &\leftarrow \mathsf{x}_1 + \rho \cdot \mathsf{x}_2\\ |
|
|
|
v_i' &\leftarrow \sigma_i + \rho \cdot \theta_i |
|
|
|
\end{align*} |
|
|
|
\item $P$: output folded witness: $\widetilde{w}' \leftarrow \widetilde{w}_1 + \rho \cdot \widetilde{w}_2$. |
|
|
|
\end{enumerate} |
|
|
|
|
|
|
|
|
|
|
|
\bibliography{paper-notes.bib} |
|
|
|
\bibliographystyle{unsrt} |
|
|
|
|
|
|
|
\end{document} |