
FFT: Fast Fourier Transform

arnaucube

August 2022

Abstract

Usually while reading papers and books I take handwritten notes, this
document contains some of them re-written to LaTeX.

The notes are not complete, don’t include all the steps neither all the
proofs. I use these notes to revisit the concepts after some time of reading
the topic.

This document are notes done while reading about the topic from [1],
[2], [3].

Contents

1 Discrete & Fast Fourier Transform 1
1.1 Discrete Fourier Transform (DFT) 1
1.2 Fast Fourier Transform (FFT) . 2

2 FFT over finite fields, roots of unity, and polynomial multipli-
cation 2
2.1 Intro . 2
2.2 Roots of unity . 3
2.3 FFT over finite fields . 3
2.4 Polynomial multiplication with FFT 4

1 Discrete & Fast Fourier Transform

1.1 Discrete Fourier Transform (DFT)

Continuous:

x(f) =

∫ ∞

−∞
x(t)e−2πftdt

Discrete: The kth frequency, evaluating at n of N samples.

f̂k =

n−1∑
n=0

fne
−jπkn

N

1

where we can group under bn = πkn
N . The previous expression can be ex-

panded into:
xk = x0e

−b0j + x1e
−b1j + ...+ xne

−bnj

By the Euler’s formula we have ejx = cos(x)+ j · sin(x), and using it in the
previous xk, we obtain

xk = x0[cos(−b0) + j · sin(−b0)] + . . .

Using f̂k we obtained

{f0, f1, . . . , fN} DFT−−−→ {f̂0, f̂1, . . . , f̂N}

To reverse the f̂k back to fk:

fk =

(
n−1∑
n=0

f̂ne
−jπkn

N

)
· 1

N

DFT =

f̂0
f̂1
f̂2
...

f̂n

 =

1 1 1 . . . 1
1 wn w2

n . . . wN−1
n

1 w2
n w4

n . . . w
2(N−1)
n

...
...

...
...

1 wn−1
n w

2(n−1)
n . . . w

(N−1)2

n

f0
f1
f2
...
fn

1.2 Fast Fourier Transform (FFT)

While DFT is O(n), FFT is O(nlog(n))
Here you can find a simple implementation of the these concepts in Rust:

arnaucube/fft-rs [4]

2 FFT over finite fields, roots of unity, and poly-
nomial multiplication

FFT is very useful when working with polynomials. [TODO poly multiplication]
An implementation of the FFT over finite fields using the Vandermonde

matrix approach can be found at [5].

2.1 Intro

Let A(x) be a polynomial of degree n− 1,

A(x) = a0 + a1 · x+ a2 · x2 + · · ·+ an−1 · xn−1 =

n−1∑
i=0

ai · xi

We can represent A(x) in its evaluation form,

2

https://github.com/arnaucube/fft-rs

(x0, A(x0)), (x1, A(x1)), · · · , (xn−1, A(xn−1)) = (xi, A(xi))

We can evaluate A(x) at n given points (x0, x1, ..., xn−1):
A(x0)
A(x1)
A(x2)

...
A(xn−1)

 =

x0
0 x1

0 x2
0 . . . xn−1

0

x0
1 x1

1 x2
1 . . . xn−1

1

x0
2 x1

2 x2
2 . . . xn−1

2
...

...
...

...
x0
n−1 x1

n−1 x2
n−1 . . . xn−1

n−1

a0
a1
a2
...

an−1

This is known by the Vandermonde matrix.
But this will not be too efficient. Instead of random xi values, we use roots

of unity, where ωn
n = 1. We denote ω as a primitive nth root of unity:

A(1)
A(ω)
A(ω2)

...
A(ωn−1)

 =

1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

...
...

1 ωn−1 ω2(n−1) . . . ω(n−1)2

a0
a1
a2
...

an−1

Which we can see as

Â = Fn ·A

This matches our system of equations:

� at x = 0, a0 + a1 + · · ·+ an−1 = A0 = A(1)

� at x = 1, a0 · 1 + a1 · ω + a2 · ω2 + · · ·+ an−1 · ωn−1 = A1 = A(ω)

� at x = 2, a0 · 1 + a1 · ω2 + a2 · ω4 + · · ·+ an−1 · ω2(n−1) = A2 = A(ω2)

� · · ·

� at x = n− 1, a0 · 1 + a1 · ωn−1 + a2 · ω2(n−1) + · · ·+ an−1 · ω(n−1)(n−1) =
A2 = A(ωn−1)

We denote the Fn as the Fourier matrix, with j rows and k columns, where
each entry can be expressed as Fjk = ωjk.

To find the ai values, we use the inverted Fn = F−1
n

2.2 Roots of unity

todo

2.3 FFT over finite fields

todo

3

2.4 Polynomial multiplication with FFT

todo

References

[1] Linear algebra and its applications, by gilbert strang (chapter 3.5). https:
//archive.org/details/linearalgebrait00stra.

[2] Thomas Pornin mathoverflow answer. https://crypto.stackexchange.

com/a/63616.

[3] notes by Prof. R. Fateman. https://www.csee.umbc.edu/~phatak/691a/
fft-lnotes/fftnotes.pdf.

[4] fft-rs. https://github.com/arnaucube/fft-rs.

[5] fft-sage. https://github.com/arnaucube/math/blob/master/fft.sage.

4

https://archive.org/details/linearalgebrait00stra
https://archive.org/details/linearalgebrait00stra
https://crypto.stackexchange.com/a/63616
https://crypto.stackexchange.com/a/63616
https://www.csee.umbc.edu/~phatak/691a/fft-lnotes/fftnotes.pdf
https://www.csee.umbc.edu/~phatak/691a/fft-lnotes/fftnotes.pdf
https://github.com/arnaucube/fft-rs
https://github.com/arnaucube/math/blob/master/fft.sage

	Discrete & Fast Fourier Transform
	Discrete Fourier Transform (DFT)
	Fast Fourier Transform (FFT)

	FFT over finite fields, roots of unity, and polynomial multiplication
	Intro
	Roots of unity
	FFT over finite fields
	Polynomial multiplication with FFT

