FFT: Fast Fourier Transform

arnaucube

August 2022

Abstract

Usually while reading papers and books I take handwritten notes, this document contains some of them re-written to LaTeX .

The notes are not complete, don't include all the steps neither all the proofs. I use these notes to revisit the concepts after some time of reading the topic.

This document are notes done while reading about the topic from [1], [2], [3].

Contents

1 Discrete \& Fast Fourier Transform 1

1.1 Discrete Fourier Transform (DFT) 1
1.2 Fast Fourier Transform (FFT) . 2

2 FFT over finite fields, roots of unity, and polynomial multiplication2
2.1 Intro 2
2.2 Roots of unity 3
2.3 FFT over finite fields 3
2.4 Polynomial multiplication with FFT 4

1 Discrete \& Fast Fourier Transform

1.1 Discrete Fourier Transform (DFT)

Continuous:

$$
x(f)=\int_{-\infty}^{\infty} x(t) e^{-2 \pi f t} d t
$$

Discrete: The $k^{t h}$ frequency, evaluating at n of N samples.

$$
\hat{f}_{k}=\sum_{n=0}^{n-1} f_{n} e^{\frac{-j \pi k n}{N}}
$$

where we can group under $b_{n}=\frac{\pi k n}{N}$. The previous expression can be expanded into:

$$
x_{k}=x_{0} e^{-b_{0} j}+x_{1} e^{-b_{1} j}+\ldots+x_{n} e^{-b_{n} j}
$$

By the Euler's formula we have $e^{j x}=\cos (x)+j \cdot \sin (x)$, and using it in the previous x_{k}, we obtain

$$
x_{k}=x_{0}\left[\cos \left(-b_{0}\right)+j \cdot \sin \left(-b_{0}\right)\right]+\ldots
$$

Using \hat{f}_{k} we obtained

$$
\left\{f_{0}, f_{1}, \ldots, f_{N}\right\} \xrightarrow{D F T}\left\{\hat{f}_{0}, \hat{f_{1}}, \ldots, \hat{f_{N}}\right\}
$$

To reverse the $\hat{f_{k}}$ back to f_{k} :

$$
\begin{gathered}
f_{k}=\left(\sum_{n=0}^{n-1} \hat{f}_{n} e^{\frac{-j \pi k n}{N}}\right) \cdot \frac{1}{N} \\
D F T=\left(\begin{array}{c}
\hat{f}_{0} \\
\hat{f}_{1} \\
\hat{f}_{2} \\
\vdots \\
\hat{f}_{n}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & w_{n} & w_{n}^{2} & \ldots & w_{n}^{N-1} \\
1 & w_{n}^{2} & w_{n}^{4} & \ldots & w_{n}^{2(N-1)} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & w_{n}^{n-1} & w_{n}^{2(n-1)} & \ldots & w_{n}^{(N-1)^{2}}
\end{array}\right)\left(\begin{array}{c}
f_{0} \\
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right)
\end{gathered}
$$

1.2 Fast Fourier Transform (FFT)

While DFT is $O(n)$, FFT is $O(n \log (n))$
Here you can find a simple implementation of the these concepts in Rust: arnaucube/fft-rs [4]

2 FFT over finite fields, roots of unity, and polynomial multiplication

FFT is very useful when working with polynomials. [TODO poly multiplication]
An implementation of the FFT over finite fields using the Vandermonde matrix approach can be found at [5].

2.1 Intro

Let $A(x)$ be a polynomial of degree $n-1$,

$$
A(x)=a_{0}+a_{1} \cdot x+a_{2} \cdot x^{2}+\cdots+a_{n-1} \cdot x^{n-1}=\sum_{i=0}^{n-1} a_{i} \cdot x^{i}
$$

We can represent $A(x)$ in its evaluation form,

$$
\left(x_{0}, A\left(x_{0}\right)\right),\left(x_{1}, A\left(x_{1}\right)\right), \cdots,\left(x_{n-1}, A\left(x_{n-1}\right)\right)=\left(x_{i}, A\left(x_{i}\right)\right)
$$

We can evaluate $\mathrm{A}(\mathrm{x})$ at n given points $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$:

$$
\left(\begin{array}{c}
A\left(x_{0}\right) \\
A\left(x_{1}\right) \\
A\left(x_{2}\right) \\
\vdots \\
A\left(x_{n-1}\right)
\end{array}\right)=\left(\begin{array}{ccccc}
x_{0}^{0} & x_{0}^{1} & x_{0}^{2} & \ldots & x_{0}^{n-1} \\
x_{1}^{0} & x_{1}^{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
x_{2}^{0} & x_{2}^{1} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & & \vdots \\
x_{n-1}^{0} & x_{n-1}^{1} & x_{n-1}^{2} & \ldots & x_{n-1}^{n-1}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{n-1}
\end{array}\right)
$$

This is known by the Vandermonde matrix.
But this will not be too efficient. Instead of random x_{i} values, we use roots of unity, where $\omega_{n}^{n}=1$. We denote ω as a primitive $n^{t h}$ root of unity:

$$
\left(\begin{array}{c}
A(1) \\
A(\omega) \\
A\left(\omega^{2}\right) \\
\vdots \\
A\left(\omega^{n-1}\right)
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & \omega & \omega^{2} & \ldots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \ldots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \ldots & \omega^{(n-1)^{2}}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{n-1}
\end{array}\right)
$$

Which we can see as

$$
\hat{A}=F_{n} \cdot A
$$

This matches our system of equations:

- at $x=0, a_{0}+a_{1}+\cdots+a_{n-1}=A_{0}=A(1)$
- at $x=1, a_{0} \cdot 1+a_{1} \cdot \omega+a_{2} \cdot \omega^{2}+\cdots+a_{n-1} \cdot \omega^{n-1}=A_{1}=A(\omega)$
- at $x=2, a_{0} \cdot 1+a_{1} \cdot \omega^{2}+a_{2} \cdot \omega^{4}+\cdots+a_{n-1} \cdot \omega^{2(n-1)}=A_{2}=A\left(\omega^{2}\right)$
- ...
- at $x=n-1, a_{0} \cdot 1+a_{1} \cdot \omega^{n-1}+a_{2} \cdot \omega^{2(n-1)}+\cdots+a_{n-1} \cdot \omega^{(n-1)(n-1)}=$ $A_{2}=A\left(\omega^{n-1}\right)$

We denote the F_{n} as the Fourier matrix, with j rows and k columns, where each entry can be expressed as $F_{j k}=\omega^{j k}$.

To find the a_{i} values, we use the inverted $F_{n}=F_{n}^{-1}$

2.2 Roots of unity

todo

2.3 FFT over finite fields

todo

2.4 Polynomial multiplication with FFT

 todo
References

[1] Linear algebra and its applications, by gilbert strang (chapter 3.5). https: //archive.org/details/linearalgebrait00stra.
[2] Thomas Pornin mathoverflow answer. https://crypto.stackexchange. com/a/63616.
[3] notes by Prof. R. Fateman. https://www.csee.umbc.edu/~phatak/691a/ fft-lnotes/fftnotes.pdf.
[4] fft-rs. https://github.com/arnaucube/fft-rs.
[5] fft-sage. https://github.com/arnaucube/math/blob/master/fft.sage.

