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Abstract

Usually while reading papers and books I take handwritten notes, this
document contains some of them re-written to LaTeX.

The notes are not complete, don’t include all the steps neither all the
proofs. I use these notes to revisit the concepts after some time of reading
the topic.

This document are notes done while reading about the topic from [1],
[2], [3].
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1 Discrete & Fast Fourier Transform

1.1 Discrete Fourier Transform (DFT)

Continuous:

x(f) =

∫ ∞

−∞
x(t)e−2πftdt

Discrete: The kth frequency, evaluating at n of N samples.

f̂k =

n−1∑
n=0

fne
−jπkn

N
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where we can group under bn = πkn
N . The previous expression can be ex-

panded into:
xk = x0e

−b0j + x1e
−b1j + ...+ xne

−bnj

By the Euler’s formula we have ejx = cos(x)+ j · sin(x), and using it in the
previous xk, we obtain

xk = x0[cos(−b0) + j · sin(−b0)] + . . .

Using f̂k we obtained

{f0, f1, . . . , fN} DFT−−−→ {f̂0, f̂1, . . . , f̂N}

To reverse the f̂k back to fk:

fk =

(
n−1∑
n=0

f̂ne
−jπkn

N

)
· 1

N

DFT =


f̂0
f̂1
f̂2
...

f̂n

 =


1 1 1 . . . 1
1 wn w2

n . . . wN−1
n

1 w2
n w4

n . . . w
2(N−1)
n

...
...

...
...

1 wn−1
n w

2(n−1)
n . . . w

(N−1)2

n




f0
f1
f2
...
fn


1.2 Fast Fourier Transform (FFT)

While DFT is O(n), FFT is O(nlog(n))
Here you can find a simple implementation of the these concepts in Rust:

arnaucube/fft-rs [4]

2 FFT over finite fields, roots of unity, and poly-
nomial multiplication

FFT is very useful when working with polynomials. [TODO poly multiplication]
An implementation of the FFT over finite fields using the Vandermonde

matrix approach can be found at [5].

2.1 Intro

Let A(x) be a polynomial of degree n− 1,

A(x) = a0 + a1 · x+ a2 · x2 + · · ·+ an−1 · xn−1 =

n−1∑
i=0

ai · xi

We can represent A(x) in its evaluation form,

2

https://github.com/arnaucube/fft-rs


(x0, A(x0)), (x1, A(x1)), · · · , (xn−1, A(xn−1)) = (xi, A(xi))

We can evaluate A(x) at n given points (x0, x1, ..., xn−1):
A(x0)
A(x1)
A(x2)

...
A(xn−1)

 =


x0
0 x1

0 x2
0 . . . xn−1

0

x0
1 x1

1 x2
1 . . . xn−1

1

x0
2 x1

2 x2
2 . . . xn−1

2
...

...
...

...
x0
n−1 x1

n−1 x2
n−1 . . . xn−1

n−1




a0
a1
a2
...

an−1


This is known by the Vandermonde matrix.
But this will not be too efficient. Instead of random xi values, we use roots

of unity, where ωn
n = 1. We denote ω as a primitive nth root of unity:

A(1)
A(ω)
A(ω2)

...
A(ωn−1)

 =


1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

...
...

1 ωn−1 ω2(n−1) . . . ω(n−1)2




a0
a1
a2
...

an−1


Which we can see as

Â = Fn ·A

This matches our system of equations:

� at x = 0, a0 + a1 + · · ·+ an−1 = A0 = A(1)

� at x = 1, a0 · 1 + a1 · ω + a2 · ω2 + · · ·+ an−1 · ωn−1 = A1 = A(ω)

� at x = 2, a0 · 1 + a1 · ω2 + a2 · ω4 + · · ·+ an−1 · ω2(n−1) = A2 = A(ω2)

� · · ·

� at x = n− 1, a0 · 1 + a1 · ωn−1 + a2 · ω2(n−1) + · · ·+ an−1 · ω(n−1)(n−1) =
A2 = A(ωn−1)

We denote the Fn as the Fourier matrix, with j rows and k columns, where
each entry can be expressed as Fjk = ωjk.

To find the ai values, we use the inverted Fn = F−1
n

2.2 Roots of unity

todo

2.3 FFT over finite fields

todo
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2.4 Polynomial multiplication with FFT

todo
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