Notes on Nova

arnaucube

March 2023

Abstract

Notes taken while reading Nova [I] paper.

Usually while reading papers I take handwritten notes, this document
contains some of them re-written to LaTeX.

The notes are not complete, don’t include all the steps neither all the
proofs.

Thanks to [Levs57, Nalin Bhardwaj and Carlos Pérez| for clarifications
on the Nova paper.

Contents

1 NIFS]

1.2 Folding scheme for committed relaxed R1CS|.
1.3 NIFS. e

2_Noval
2.1 IVCoproots|

A —

=

1 NIFS

1.1 R1CS modification

R1CS RICS instance: (A, B,C,io,m,n), where io denotes the public input
and output, A, B,C € F™*" with m > |io| + 1. R1CS is satisfied by a witness
w € F=liel=1 gych that

AzoBz=Cx

where z = (io, 1, w).

Want: merge 2 instances of R1CS with the same matrices into a single one.
Each instance has z; = (W;, ;) (public witness, private values resp.).

https://twitter.com/levs57
https://twitter.com/nibnalin
https://twitter.com/cperezz19

traditional R1CS Merged instance with z = 21 + 725, for rand r. But, since
R1CS is not linear — can not apply.

eg.
Azo Bz = A(z1 + rz2) o B(z1 + r22)
= Azy 0 Bz1 +1(Az 0 Bzg + Azs 0 Bzy) + TQ(AZQ o Bz)
#+Cz
— introduce error vector E € F™™, which absorbs the cross-temrs generated
by folding.

— introduce scalar u, which absorbs an extra factor of » in Cz; + r2Czs
and in z = (W,z,1+r-1).

Relaxed R1CS

U= uy + rus
E =FE) +7(Az 0Bz + Az 0 B2y — u1Czy — usC2y) + 12 Es
AzoBz=uCz+ E, with z= (W, z, u)

where R1CS set £ =0, u=1.

Azo Bz = Az o Bz +1(Az 0 B2y + Azy 0 Bzy) + 1?(Azy 0 Bzy)
= (u1Cz1 + E1) +r(Az1 0 Bzg + Az9 0 Bz1) + rz(UQCZQ + E»)
=u1Cz + E1 +r(Az1 0 Bzg + Az 0 Bzy) + 12 By +1%u5C29

E

=u;Cz + 72usCz0 + E
=(up +ruz)-C- (21 +7122) + E
=uCz+ FE

For R1CS matrices (A, B, C), the folded witness W is a satisfying witness
for the folded instance (E, u, x).

Problem: not non-trivial, and not zero-knowledge. Solution: use polyno-
mial commitment with hiding, binding, succintness and additively homomorphic
properties.

Committed Relaxed R1CS Instance for a Committed Relaxed R1CS
(E,u, W, z), satisfied by a witness (E,rg, W, ry) such that
E=Com(E,rg)
W = Com(E,rw)
AzoBz=uCz+ E, where z=(W,x,u)

1.2 Folding scheme for committed relaxed R1CS

V and P take two committed relaxed R1CS instances
Y1 = (El,u1,W1,$1)
Y2 = (Ez,uz,Wz,Iz)
P additionally takes witnesses to both instances
(ElarElearVVl)
(E2,rEy, Wa,Tw,)
Let Z1 = (Wl,xl,ul) and ZQ = (WQ,IQ,UQ).

1. P send T = Com(T,rr),
where T'= Az 0 Bz1 + Az 0 Bzg — u1C21 — usCzo
and rand rp € F

2. V sample random challenge r € F

3. V, P output the folded instance ¢ = (E,u, W, x)

4. P outputs the folded witness (E,rg, W, rw)
E=FE +1T +1r°E,

TE =TE, +’I”"I’T+7'2TE2
W =W +rW;

Tw =Tw, + 7T Tw,

P will prove that knows the valid witness (F,rg, W, ry/) for the committed

relaxed R1CS without revealing its value.

Prover Verifier

T = Az 0Bz + Azy 0 Bzy —u1C29 — usCz9 o

T = Commit(T, r7) *
E = E1 +TT+T2E2
U= Uy + rusg /
W =Wy +rWsy
W = Tw, 7w,
(E,re, W,rw)

TGRIFp
E:E1+TT+T2E2
U = u + rus

W= Wi+rWsy
T =21 +71rTo
(p = (E7U7W7m)

The previous protocol achieves non-interactivity via Fiat-Shamir transform,
obtaining a Non-Interactive Folding Scheme for Committed Relaxed R1CS.

Note: the paper later uses u;, U; for the two inputted ¢1, 2, and later u; 1
for the outputted ¢. Also, the paper later uses w, W to refer to the witnesses
of two folded instances (eg. w = (E,rg, W,rw)).

1.3 NIFS

fold witness, (pk, (u1,w1), (uz,ws)):

1. T= Az 0Bz + Azp 0 Bzg — u1Cz9 — usC 2o
2. T = Commit(T,rr)
3. output the folded witness (E,rg, W, rw)

E=E, +rT +1r%F,

rE =TE, +r~rT—|—r2rEQ
W =Wy +rWy

W =Tw, 7w,

fold instances (¢1,02) — @, (Vk,ui,us, E1, Eo, W1, W, T):
V compute folded instance ¢ = (E,u, W, z)

E:E1+7‘T+T2E2
u

= U] + rug

S

= W1 + TWQ

T =x1+1rre

2 Nova

IVC (Incremental Verifiable Computation) scheme for a non-interactive folding
scheme.

2.1 IVC proofs

Allows prover to show z, = F (”)(zo), for some count n, initial input zg, and
output z,.

F': program function (polynomial-time computable)

F’: augmented function, invokes F' and additionally performs fold-related stuff.

Two committed relaxed R1CS instances:
U;: represents the correct execution of invocations 1,...,7i — 1 of F’
u;: represents the correct execution of invocations 7 of F’

Simplified version of I’ for intuition F' performs two tasks:

i. execute a step of the incremental computation: instance u; contains z;, used
to output z;11 = F(z;)

ii. invokes the verifier of the non-interactive folding scheme to fold the task of
checking u; and U; into the task of checking a single instance U; 4

F’ proves that:

1. 3((4, 20, i, ui, U;), U1, T) such that

i. u;.r = H(Uk’,i,Zo,Zi,Ui)
ii. hi+1 :H(Uk,i+1,ZO,F(Zi),Ui+1)
iii. Ujp1 = NIFS.V(vk,U;,u;,T)

2. F' outputs hjyq

F’ is described as folloys:
F,(Uk7 Uia u;, (Zv 20, Zi),'lUi,T) — X
if = 0, output H(vk, 1, zo, F (20, w;),u,)

otherwise

1. check u;.x = H(vk, 1, 20, 2;, U;)
2. check (u;.E,u;.u) = (uy.E, 1)
3. compute U; 1 < NIFS.V(vk,U,u,T)
4. output H(vk,i+ 1, 29, F (2, w;),Uit1)
IVC Proof iteration ¢ + 1: prover runs F’ and computes u;y1, U;iq, with

corresponding witnesses w; 1, W;11. (u;+1, U;p1) attest correctness of i + 1
invocations of F’, the IVC proof is m;41 = ((Ui1, Wig1), (Uig1, Wit1))-

P(pk7 (Za 20, Zi)awiaﬂ-i) — 41+
Parse m; = ((U;, W;), (u;, w;)), then

1. ifi=0: (Ui+1,WZ‘+1,T) — (UL,WL,UL.E)

otherwise: (UZ‘+1,W1'+1,T) < NIFSP(pk, (U“Wl), (Ui,Wi))
2. compute (ujr1,Wi+1) < trace(F, (vk,Us, u;, (i, 20, 2:), Wi, T))
3. output i1 < ((Uir1, Wis1), (i1, Wit1))

V(vk, (i, 20, 2:), ™) — {0,1}: if ¢ = 0: check that z; = 2
otherwise, parse m; = ((U;, W;), (uz, w;)), then

1. check u;.x = H(vk, 1, 20, 2;, U;)

2. check (u;.E,u;.u) = (uy.E, 1)

3. check that W,;, w; are satisfying witnesses to U;, u; respectively

A zkSNARK of a Valid IVC Proof prover and verifier:
P(pk, (i, z0,2;),IT) = m:

if i = 0, output L, otherwise:

parse IT as ((U, W), (u,w))

1. compute (U, W', T) <~ NIFS.P(pknrrs, (U, W), (u, w))
2. compute 7, < zkSNARK.P(pk.rsyark, U, W)
3. output (U, u,T,my)

V(vk, (4, 20, 2:), ™) = {0,1}:
if 4 = 0: check that z; = zo
parse 7 as (U,u, T, 7my)

1. check u.x = H(vkn1rs,i, 20, 2i, U)

[\]

. check (u.E,u.u) = (uy.E,1)

©w

compute U« NIFS.V(U]{}ijs, U, U,T)
4. check Zk'SNARK.V(UkaSNARK, U',wu/) =1

References

[1] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive
zero-knowledge arguments from folding schemes. Cryptology ePrint Archive,
Paper 2021/370, 2021. https://eprint.iacr.org/2021/370.

https://eprint.iacr.org/2021/370

	NIFS
	R1CS modification
	Folding scheme for committed relaxed R1CS
	NIFS

	Nova
	IVC proofs

