
NTT for Negacyclic Polynomial Multiplication

arnaucube

January 2025

Abstract

Notes taken while studying the NTT, mostly from [1].
Usually while reading books and papers I take handwritten notes in a

notebook, this document contains some of them re-written to LaTeX.
The notes are not complete, don’t include all the steps neither all the

proofs.
An implementation of the NTT can be found at

https://github.com/arnaucube/fhe-study/blob/main/arithmetic/src/ntt.rs.

Contents

1 Main idea 1

2 Cyclotomic vs Negacyclic 2
2.1 Cyclotomic: Zq[X]/(Xn − 1) . 2

2.1.1 NTT based on w . 2
2.1.2 Inverse NTT based on w 2

2.2 Apply it to polynomial multiplication 3
2.3 Negacyclic: Zq[X]/(Xn + 1) . 3

2.3.1 NTT based on ψ, NTTψ 3
2.3.2 Inverse NTT based on ψ, iNTTψ 4

2.4 Use it to polynomial multiplication 4

3 Fast NTT 4
3.1 Cooley-Tukey algorithm (Fast NTT) 5
3.2 Gentleman-Sande algorithm (Fast iNTT) 5

1 Main idea

For doing multiplications in the negacyclic polynomial ring (Zq[X]/(Xn + 1)),
rather than doing it in a naive way, it is more efficient to do it through the
NTT.

1

https://github.com/arnaucube/fhe-study/blob/main/arithmetic/src/ntt.rs

This is, let a(X), b(X) ∈ Zq[X]/(Xn + 1), and suppose we want to obtain
a(X) · b(X). First apply the NTT to the two ring elements that we want to
multiply,

â(X) = NTT (a(X)), b̂(X) = NTT (b(X))

then multiply the result element-wise,

c = â ◦ b̂

where ◦ means the element-wise vector multiplication in Zq.
Then apply the NTT−1 to the result, obtaining the actual value of multi-

plying a(X) · b(X).

2 Cyclotomic vs Negacyclic

2.1 Cyclotomic: Zq[X]/(Xn − 1)

In the cyclotomic case, the primitive n-th root of unity in Zq is w
n ≡ 1 (mod q)

(and wk ̸≡ 1 (mod q) fork < n)

2.1.1 NTT based on w

NTT of a polynomial a(X) =
∑
aiX

i is defined as â = NTT (a), where

âj =

n−1∑
i=0

aiw
ij (mod q)

for each of the j = 0, 1, . . . , n− 1.
We can visualize the NTT operation as

NTT (a) =

w0·0 w0·1 w0·2 . . . w0·(n−1)

w1·0 w1·1 w1·2 . . . w1·(n−1)

w2·0 w2·1 w2·2 . . . w2·(n−1)

...
...

...
...

w(n−1)·0 w(n−1)·1 w(n−1)·2 . . . w(n−1)·(n−1)

a0
a1
a2
...

an−1

 =

â0
â1
â2
...

ân−1

2.1.2 Inverse NTT based on w

Inverse-NTT of a vector â is defined as a = iNTT (â), where

ai = n−1
n−1∑
j=0

âjw
−ijk (mod q)

with j = 0, 1, . . . , n− 1.
Similar to the NTT formula, only diffs:

• w is replaced by its inverse in Zq

2

• n−1 scaling factor

We can visualize the NTT−1 operation as

iNTT (â) = n−1·

w−0·0 w−0·1 w−0·2 . . . w−0·(n−1)

w−1·0 w−1·1 w−1·2 . . . w−1·(n−1)

w−2·0 w−2·1 w−2·2 . . . w−2·(n−1)

...
...

...
...

w−(n−1)·0 w−(n−1)·1 w−(n−1)·2 . . . w−(n−1)·(n−1)

â0
â1
â2
...

ân−1

 =

a0
a1
a2
...

an−1

2.2 Apply it to polynomial multiplication

Want to compute c(X) = a(X) · b(X) ∈ Zq[X]/(Xn − 1), which we can do as

c = iNTT (NTT (a) ◦NTT (b))

where ◦ means the element-wise vector multiplication in Zq.

2.3 Negacyclic: Zq[X]/(Xn + 1)

Instead of working in Zq[X]/(Xn − 1), we work in Zq[X]/(Xn + 1).
Instead of using the primitive n-th root of unity (w), we use the primitive

2n-th root of unity ψ.
Where ψ2 ≡ w (mod q), and ψ2 ≡ −1 (mod q).

2.3.1 NTT based on ψ, NTTψ

â = NTTψ(a), where

âj =

n−1∑
i=0

ψiwijai (mod q)

with j = 0, 1, . . . , n− 1.
Since ψ2 ≡ w (mod q), we can substitute w = ψ2:

âj =

n−1∑
i=0

ψ2ij+iai (mod q)

getting rid of w.
We can visualize the NTTψ operation as

NTTψ(a) =

ψ2(0·0)+0 ψ2(0·1)+1 ψ2(0·2)+2 . . . ψ2(0·(n−1))+(n−1)

ψ2(1·0)+0 ψ2(1·1)+1 ψ2(1·2)+2 . . . ψ2(1·(n−1))+(n−1)

ψ2(2·0)+0 ψ2(2·1)+1 ψ2(2·2)+2 . . . ψ2(2·(n−1))+(n−1)

...
...

...
...

ψ2((n−1)·0)+0 ψ2((n−1)·1)+1 ψ2((n−1)·2)+2 . . . ψ2((n−1)·(n−1))+(n−1)

a0
a1
a2
...

an−1

 =

â0
â1
â2
...

ân−1

3

2.3.2 Inverse NTT based on ψ, iNTTψ

a = iNTTψ(â), where

ai = n−1
n−1∑
j=0

ψ−jw−ij âj (mod q)

with i = 0, 1, . . . , n− 1.
Which substituting w = ψ2 we get

ai = n−1
n−1∑
j=0

ψ−(2ij+j)âj (mod q)

So the differences with the NTTψ are:

• ψ is replaced by its inverse ψ−1 in Zq

• n−1 scaling factor

• transpose of the exponents of ψ

We can visualize the NTT−ψ operation as

iNTTψ(a) =
ψ−(2(0·0)+0) ψ−(2(0·1)+1) ψ−(2(0·2)+2) . . . ψ−(2(0·(n−1))+(n−1))

ψ−(2(1·0)+0) ψ−(2(1·1)+1) ψ−(2(1·2)+2) . . . ψ−(2(1·(n−1))+(n−1))

ψ−(2(2·0)+0) ψ−(2(2·1)+1) ψ−(2(2·2)+2) . . . ψ−(2(2·(n−1))+(n−1))

...
...

...
...

ψ−(2((n−1)·0)+0) ψ−(2((n−1)·1)+1) ψ−(2((n−1)·2)+2) . . . ψ−(2((n−1)·(n−1))+(n−1))

â0
â1
â2
...

ân−1

 =

a0
a1
a2
...

an−1

2.4 Use it to polynomial multiplication

Want to compute c(X) = a(X) · b(X) ∈ Zq[X]/(Xn − 1), which we can do as

c = iNTTψ1(NTTψ(a) ◦NTTψ(b))

where ◦ means the element-wise vector multiplication in Zq.

3 Fast NTT

NTT and INTT have O(n2) complexity, but since NTT is the DFT in a ring, we
can apply the DFT optimization techniques (FFT), to reduce the complexity to
O(nlogn).

We use two properties of ψ:

• periodicity: ψk+2n = ψk

• symmetry: ψk+n = −ψk

4

3.1 Cooley-Tukey algorithm (Fast NTT)

Recall,

âj =

n−1∑
i=0

ψ2ij+iai (mod q)

we can split it into two parts,

âj =

n/2−1∑
i=0

ψ4ij+2ia2i +

n/2−1∑
i=0

ψ4ij+2j+2i+1a2i+1 (mod q)

=

n/2−1∑
i=0

ψ4ij+2ia2i + ψ2j+1 ·
n/2−1∑
i=0

ψ4ij+2ia2i+1 (mod q)

Let

Aj =

n/2−1∑
i=0

ψ4ij+2ia2i (mod q)

Bj =

n/2−1∑
i=0

ψ4ij+2ia2i+1 (mod q)

then,

âj = Aj + ψ2j+1 ·Bj (mod q)

âj+n/2 = Aj − ψ2j+1 ·Bj (mod q)

Notice that Aj , Bj can be obtained as n/2 points. So if n is a power of two,
we can repeat the process for all the coefficients.

[todo: diagram and explain intuition]

3.2 Gentleman-Sande algorithm (Fast iNTT)

Instead of dividing the summation by its index parity, it is separated by the
lower and upper half of the summation.

Similar to what we did in section 3.1, let’s split the equation to compute ai.
Recall that we had

ai = n−1
n−1∑
j=0

ψ−(2ij+j)âj (mod q)

we can split it into two parts,

5

ai = n−1 ·

n/2−1∑
j=0

ψ−(2i+1)j âj +

n/2−1∑
j=0

ψ−(2i+1)(j+n/2)âj+n/2

 (mod q)

= n−1 · ψ−i ·

n/2−1∑
j=0

ψ−2ij âj +

n/2−1∑
j=0

ψ−2i(j+n/2)âj+n/2

 (mod q)

Based on the periodicity and symmetry of ψ−1, leaving the n−1 factor out,
for the even terms:

a2i = ψ−2i ·

n/2−1∑
j=0

ψ−4ij âj +

n/2−1∑
j=0

ψ−4i(j+n/2)â(j + n/2)

 (mod q)

= ψ−2i

n/2−1∑
j=0

(âj + âj+n/2)ψ
−4ij) (mod q)

Doing the same derivation for the odd terms:

a2i+1 = ψ−2i

n/2−1∑
j=0

(âj − âj+n/2)ψ
−4ij (mod q)

Now, let

Aj =

n/2−1∑
j=0

âjψ
−4ij , Bj =

n/2−1∑
j=0

âj+n/2ψ
−4ij

then

a2i = (Ai +Bi)ψ
−2i (mod q)

a2i+1 = (Ai −Bi)ψ
−2i (mod q)

[todo: add diagram and explain intuition]

References

[1] Ardianto Satriawan, Infall Syafalni, Rella Mareta, Isa Anshori, Wervyan
Shalannanda, and Aleams Barra. Conceptual review on number theoretic
transform and comprehensive review on its implementations. IEEE Access,
11:70288–70316, 2023.

6

	Main idea
	Cyclotomic vs Negacyclic
	Cyclotomic: Zq[X]/(X**n-1)
	NTT based on w
	Inverse NTT based on w

	Apply it to polynomial multiplication
	Negacyclic: Zq[X]/(X**n+1)
	NTT based on psi, NTT**psi
	Inverse NTT based on psi, iNTT**psi

	Use it to polynomial multiplication

	Fast NTT
	Cooley-Tukey algorithm (Fast NTT)
	Gentleman-Sande algorithm (Fast iNTT)

