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Abstract

Notes taken while reading about Spartan [IJ.

Usually while reading papers I take handwritten notes, this document
contains some of them re-written to LaTeX.

The notes are not complete, don’t include all the steps neither all the

proofs.
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1 RI1CS into Sum-Check protocol

Def 1.1. R1CS Jw € F™-ll=1 such that (A - 2) o (B - z2)
z = (io, 1, w).
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Thm 4.1 ¥V R1CS instance = = (F, 4, B,C,io,m,n), 3 a degree-3 log m-
variate polynomial G such that 3°, o 1yi00m G(2) = 0 iff 3 a witness w such
that Satrics(z,w) = 1.

We can view matrices A, B,C' € F™*™ as functions {0,1}* x {0,1}* — F
(s = [logm]). For a given witness w to z, let z = (i0,1,w). View z as a
function {0,1}° — T, so any entry in z can be accessed with a s-bit identifier.

Fio(x)=< > A(w,y)'Z(y))‘( > B(w,y%Z(y)) > Clay)-Zy)

ye{0,1}2 y€{0,1}# ye{0,1}#

Lemma 4.1. Vo € {0,1}*, Fio(z) =0 iff Satpics(z,w) = 1.



Fo(+) is a function, not a polynomial, so it can not be used in the Sum-check
protocol.
F;»(x) function is converted to a polynomial by using its polynomial exten-

sion Fj,(z) : F* — T,

ﬁw(ﬁﬁ)Z( > ﬁ(ﬂc»y)i(y))( > E(%y)-f(y))— > Clay)-Zy)

y€{0,1} y€{0,1}# y€{0,1}*
Lemma 4.2. Vz € {0,1}°, ﬁio(x) =0 iff Satrics(z,w) = 1.

(proof: Yz € {0,1}*, Fi,(z) = Fj,(x), so, result follows from Lemma 4.1.)

So, for this, V will need to check that EO vanishes over the boolean hyper-
cube (Fj,(z) =0 Vz € {0,1}*).

Recall that Eo( -) is a low-degree multivariate polynomial over F in s vari-
ables. Thus, checking that F}, vanishes over the boolean hypercube is equivalent
to checking that F;o = 0. B

Thus, V can check 3 coy: Fio(x) = 0 using the Sum-check protocol
(through SZ lemma, V can check if for a random value it equals to 0, and
be convinced that applies to all the points whp.).

But: as Fj,(z) is not multilinear, so D wef0,1}s Fio(z) = 0 <4 Fio(z) =
0 Vz € {0,1}°. Bes: the 2° terms in the sum might cancel each other even when
the individual terms are not zero.

Solution: combine Fj,(z) with ég(t,x) to get Qio(t,x) which will be the
unique multilinear polynomial, and then check that it is a zero-polynomial

Qio(t) = Z ﬁio(x) : é?](t,l’)

xz€{0,1}*

where eq(t,z) = [[,_;(t; - @i + (1 — ;) - (1 — x;)), which is the MLE of
eq(z,e) = {1 if x = e, 0 otherwise}.

Basically Q;0(+) is a multivariate (the unique multilinear) polynomial such
that

Qio(t) = Fl‘o(t) YVt € {O, 1}8

thus, Qio(-) is a zero-polynomial iff Fio(z) = 0 Va € {0,1}5. <= iff Fj,(-)
encodes a witness w such that Satgrics(z,w) = 1.

ﬁio(x) has degree 2 in each variable, and ég(t, x) has degree 1 in each variable,
50 Q;0(t) has degree 3 in each variable.

To check that Q;,(-) is a zero-polynomial: check Q;,(7) = 0, 7 €t F*
(Schwartz-Zippel-DeMillo-Lipton lemma) through the sum-check protocol.

This would mean that the R1CS instance is satisfied.

Recap
We have that Satgics(z,w) =1 iff F;,(z) = 0.



To be able to use sum-check, we use its polynomial extension E—O(x),
using sum-check to prove that Fj,(z) = 0 Vz € {0,1}*, which means that
Satgics(z, w) =1.

To prevent potential canceling terms, we combine Fjo(x) with ég(t, z),
obtaining Gy, - (z) = Fio(z) - €q(t, z).

Thus Q0 (t) = Eze{()’l}s Eo(a?) -éq(t, ), and then we prove that Q;,(7) =
0, for 7 € .

2 NIZKs with succinct proofs for R1CS

From Thm 4.1: to check R1CS instance (F, A, B,C,i0,m,n) V can check if
Do (0.1} Gio,r(x) = 0, which through sum-check protocol can be reduced to
ex = Gior(7s), where r, € F*.

Recall: G - (2) = Fio(z) - éq(r, z).

Evaluating éq(7,7,) takes O(log m), but to evaluate Fj,(ry), V needs to
evaluate

A(re,y), B(re, y), Clre,y), Z(y), Yy € {0,1}*
which requires 3 sum-check instances ( (296{0,1}3 Az, y) - Z(y)),
(Zyem,l}s B(z,y) - Z(y)), (Zyem’l}s Oz, y) - Z(y)) ), one for each summation in
F, (x).
But note that evaluations of Z(y) Vy € {0, 1}* are already known as (io, 1,w).
Solution: combination of 3 protocols:

e Sum-check protocol
e randomized mini protocol
e polynomial commitment scheme

Basically to do a random linear combination of the 3 summations to end up
doing just a single sum-check. - o
Observation: let Fj,(ry) = A(ry) - B(ry) — C(ry), where

Aro) = > Alrayy)-Z(y), Blro)= Y. Blra,y) - Z(y)

y€{0,1} ye{0,1}

Clra)= > Clra,y)- Z(y)
ye{0,1}

Prover makes 3 separate claims: A(r,) = va, B(rz) = vp, C(r:s) = v,
then V evaluates:

Gio,‘r(rx) - (/UA *UB — UC) : éz](rz77-)



which equals to - o -
= (A(rz) - B(ra) — C(rs)) - €q(re, 7) =

(5, oo 70 5, e 20) - 3 0

y€{0,1} y€{0,1} y€{0,1}

This would be 3 sum-check protocol instances (3 claims: A(r;) = wva,

B(ry) =vg, C(ry) = vo).
Instead, combine 3 claims into a single claim:

e V samples 74,75,7c € F, and computes ¢ = rqva + rpvg + reve.
e V, P use sum-check protocol to check:
ra-Alry)+rp-B(ry) +rc-C(ry) ==c¢
Let
L(ry) =ra-A(rg) + 75 - B(ry) + 7o - C(rz)

= Y (m cA(ra,y) - Z(y) + 78 - B(re,y) - Z(y) +1c - C(ra,y) - Z(y))
ve(01)s

= > M.,y

ye{0,1}°

M, _(y) is a s-variate polynomial with deg < 2 in each variable (<= u =
s, 1=2,T=c).

M, (ry) =ra" g(rx,ry) : Z(ry) +7rB- é(m,ry) : Z(Tu) +rc: a(rwvry) Z(ry)
= (ra-A(rg,ry) + 75 Blre,ry) +1c - Clra,ry)) - Z(ry)

only one term in M, (r,) depends on prover’s witness: Z (ry), the other
terms can be computed locally by V in O(n) time (Section 6 of the paper for
sub-linear in n).

Instead of evaluating Z (ry) in O(Jw|) communications, P sends a commit-
ment to w(-) (= MLE of the witness w) to V before the first instance of the
sum-check protocol.

Recap

To check the R1CS instance, V can check >, ¢4 13 Gio,r () = 0, which
through the sum-check is reduced to e, = G +(rs), for r, € Fs.

Evaluating Gio () (Gior(x) = Fio(z)- éq(r, x)) is not cheap. Evaluating
eq(,rz) takes O(log m), but to evaluate Fio(ry), V needs to evaluate

A, B,C,Z, Wy € {0,1}*



P makes 3 separate claims: A(r,) = va, B(ry) = vg, C(ry) = vc, so V
can evaluate Gip (1) = (va - vp —ve) - €q(ry, T)

The previous claims are combined into a single claim (random linear com-
bination) to use only a single sum-check protocol:

P: ¢ =rava+7rpup + rove, for ra,rp,ro € F

V, P: sum-check r4 - A(ry) + rp - B(ry) + rc - C(ry) == ¢
¢ = L(rs) = > cio1ys Mr.(y), where M, (y) is a s-variate polynomial
with deg < 2 in each variable (<= p =35, [ =2, T = ¢). Only Z(ry)

depends on P’s witness, the other terms can be computed locally by V.

Instead of evaluating Z (ry) in O(Jw|) communications, P uses a commit-
ment to w(-) (= MLE of the witness w).

2.1 Full protocol

(Recall: Sum-Check params: p: n vars, n rounds, I: degree in each variable upper bound, 7"

claimed result.)
e pp + Setup(1*): invoke pp + PC.Setup(1*,logm); output pp
e b+< P(w),V(r) > (F,A,B,C,io,m,n):

1. P: (C,S) < PC.Commit(pp,w) and send C to V

2. V:send 7 €t Fleg ™ to P

3. let Ty =0, up =logm, l1 =3

4. V: set 7, €t i

5. Sum-check 1. e, << Psc(Gior): Vso(rs) > (p1,11,Th)
6

. P: compute vg = A(ryz), vp = B(rs), ve = C(ryg), send (va,vp,vc)
to V

V: abort with b =0 if e, # (va - vp —ve) - €q(ry, T)

8. V:send ra,r5,7c €8 F to P

=~

9. let To =rgq-va+rp-vp+rc-vo, e =logm, lo =2
10. V: set r, B Fr2
11. Sum-check 2. e, <—< Psc(M,,), Vsc(ry) > (12,12, T2)
12. P: v <= w(ry[1..]), send v to V
13. be << Ppc.poal(W, S), V. Bval (1) > (pp, C, 1y, v, 112)
14. V: abort with b=01if b, == 0
15. Vi vs = (1= 1y [0]) - @(ry[1.]) + 1y [0](i0, 1)(ry[1.])

16. V: vy « A(rx,ry% Vg E(rm,ry), Vg — C~'(rw,ry)



17. V: abort with b =0 if e, # (ravi +rpv2 +rovs) - v,

18. V:output b =1
Section 6 of the paper, describes how in step 16, instead of evaluating
A, B, C at ry, 1, with O(n) costs, P commits to A, B, C and later pro-

vides proofs of openings. o
In a practical implementation those commits to A, B, C could be done in

a preprocessing step.

‘WIP: covered until sec.6
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