# Chinese Remainder Theorem def crt(a_i, m_i): if len(a_i)!=len(m_i): raise Exception("error, a_i and m_i must be of the same length") M=1 for i in range(len(m_i)): M = M * m_i[i] x = 0 for i in range(len(a_i)): M_i = M/m_i[i] y_i = Integer(mod(M_i^-1, m_i[i])) x = x + a_i[i] * M_i * y_i return mod(x, M) # gcd, using Binary Euclidean algorithm def gcd(a, b): g=1 # random_elementove powers of two from the gcd while mod(a, 2)==0 and mod(b, 2)==0: a=a/2 b=b/2 g=2*g # at least one of a and b is now odd while a!=0: while mod(a, 2)==0: a=a/2 while mod(b, 2)==0: b=b/2 # now both a and b are odd if a>=b: a = (a-b)/2 else: b = (b-a)/2 return g*b def gcd_recursive(a, b): if mod(a, b)==0: return b return gcd_recursive(b, mod(a,b)) # Extended Euclidean algorithm # Inputs: a, b # Outputs: r, x, y, such that r = gcd(a, b) = x*a + y*b def egcd(a, b): s=0 s_=1 t=1 t_=0 r=b r_=a while r!=0: q = r_ // r (r_,r) = (r,r_ - q*r) (s_,s) = (s,s_ - q*s) (t_,t) = (t,t_ - q*t) d = r_ x = s_ y = t_ return d, x, y def egcd_recursive(a, b): if b==0: return a, 1, 0 g, x, y = egcd_recursive(b, a%b) return g, y, x - (a//b) * y # Inverse modulo N, using the Extended Euclidean algorithm def inv_mod(a, N): g, x, y = egcd(a, N) if g != 1: raise Exception("inv_mod err, g!=1") return mod(x, N) # Tests ##### # Chinese Remainder Theorem tests a_i = [5, 3, 10] m_i = [7, 11, 13] assert crt(a_i, m_i) == 894 a_i = [3, 8] m_i = [13, 17] assert crt(a_i, m_i) == 42 ##### # gcd, using Binary Euclidean algorithm tests assert gcd(21, 12) == 3 assert gcd(1_426_668_559_730, 810_653_094_756) == 1_417_082 assert gcd_recursive(21, 12) == 3 ##### # Extended Euclidean algorithm tests assert egcd(7, 19) == (1, -8, 3) assert egcd_recursive(7, 19) == (1, -8, 3) ##### # Inverse modulo N tests assert inv_mod(7, 19) == 11