Seminar exercises

February 2022

Solution 1.9.

- 1. Let f(a) = u, then g(f(a)) = g(u), so $g \circ f$ is a function.
- 2. We can see that composition of functions is associative as follows: we know that $[f \circ g](x) = f(g(x)), \forall x \in A$, so,

$$(h \circ [g \circ f])(x) = h([g \circ f](x)) = h(g(f(x)))$$

and

$$([h \circ g] \circ f)(x) = [h \circ g](f(x)) = h(g(f(x)))$$

Then, we can see that

$$h \circ (g \circ f) = h(g(f(x))) = (h \circ g) \circ f$$

Solution 1.28. (WIP)

It is isomorphic to the cosets of the *nth* roots of unity, which are $\mathbb{G}_n = \{w_k\}_{k=0}^{n-1}$, where $w_k = e^{\frac{2\pi i}{n}}$.

Solution 2.2.

To prove that the inverse x^{-1} is unique, assume x^{-1} and \tilde{x}^{-1} are two inverses of x.

By the definition of the inverse, we know that $x \cdot x^{-1} = e$. And by the definition of the unit element, we know that $x \cdot e = x$. Then,

$$x^{-1} \cdot (x \cdot \tilde{x}^{-1}) = x^{-1} \cdot e = x^{-1}$$

and

$$(x^{-1} \cdot x) \cdot \tilde{x}^{-1} = e \cdot \tilde{x}^{-1} = \tilde{x}^{-1}$$

By associativity property of groups, we know that

$$x^{-1} \cdot (x \cdot \tilde{x}^{-1}) = (x^{-1} \cdot x) \cdot \tilde{x}^{-1}$$

 $\mathbf{so},$

$$x^{-1} \cdot e = e \cdot \tilde{x}^{-1}$$

which is

$$x^{-1} = \tilde{x}^{-1}$$

So, for any $x \in G$, the inverse x^{-1} is unique.

Solution 2.5.

Let $\alpha = (\begin{smallmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{smallmatrix}), \ \beta = (\begin{smallmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{smallmatrix})$, then,

$$\alpha \cdot \beta = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

and

$$\beta \cdot \alpha = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

So, we can see that

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \neq \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

so, $\alpha \cdot \beta \neq \beta \cdot \alpha$.

Solution 2.26.

We want to prove that $f: G \to H$ is a monomorphism iff ker $f = \{e\}$. We know that f is a monomorphism (injective) iff $\forall a, b \in G, f(a) = f(b) \Rightarrow a = b$.

Let $a, b \in G$ such that f(a) = f(b). Then

$$f(a)f(b)^{-1} = f(b)(f(b))^{-1} = e$$

 $f(a)f(b^{-1}) = e$
 $f(ab^{-1}) = e$

as ker $f = \{e\}$, then we see that $ab^{-1} = e$, so a = b. Thus f is a monomorphism.