
Notes on FRI and STIR

arnaucube

February 2023

Abstract

Notes taken from Vincenzo Iovino [1] explanations about FRI [2], [3],
[4].

These notes are for self-consumption, are not complete, don’t include
all the steps neither all the proofs.

An implementation of FRI can be found at
https://github.com/arnaucube/fri-commitment [5].

Update(2024-03-22): notes on STIR [6] from explanations by Héctor
Masip Ardevol [7].

Contents

1 Preliminaries 1
1.1 General degree d test . 1

2 FRI protocol 2
2.1 Intuition . 2
2.2 FRI-LDT . 2
2.3 Parameters . 5

3 FRI as polynomial commitment scheme 5

4 STIR (main idea) 6

1 Preliminaries

1.1 General degree d test

Query at points {xi}d+1
0 , z (with rand z

R
∈ F). Interpolate p(x) at {f(xi)}d+1

0

to reconstruct the unique polynomial p of degree d such that p(xi) = f(xi) ∀i =
1, . . . , d+ 1.

V checks p(z) = f(z), if the check passes, then V is convinced with high
probability.

This needs d+ 2 queries, is linear, O(n). With FRI we will have the test in
O(log d).

1

https://sites.google.com/site/vincenzoiovinoit/
https://github.com/arnaucube/fri-commitment
https://hecmas.github.io/
https://hecmas.github.io/

2 FRI protocol

Allows to test if a function f is a poly of degree ≤ d in O(log d).
Note: ”P sends f(x) to V”, ”sends”, in the ideal IOP model means that all

the table of f(x) is sent, in practice is sent a commitment to f(x).

2.1 Intuition

V wants to check that two functions g, h are both polynomials of degree ≤ d.
Consider the following protocol:

1. V sends α ∈ F to P.

2. P sends f(x) = g(x) + αh(x) to V.

3. V queries f(r), g(r), h(r) for rand r ∈ F.

4. V checks f(r) = g(r)+αh(r). (Schwartz-Zippel lema). If holds, V can be
certain that f(x) = g(x) + αh(x).

5. P proves that deg(f) ≤ d.

6. If V is convinced that deg(f) ≤ d, V believes that both g, h have deg ≤ d.

With high probablility, α will not cancel the coeffs with deg ≥ d+ 1.
Let g(x) = a · xd+1, h(x) = b · xd+1, and set f(x) = g(x) + αh(x). Imagine

that P can chose α such that axd+1+α ·bxd+1 = 0, then, in f(x) the coefficients
of degree d+ 1 would cancel.

Here, P proves g, h both have deg ≤ d, but instead of doing 2 ·(d+2) queries
(d + 2 for g, and d + 2 for h), it is done in d + 2 queries (for f). So we halved
the number of queries.

2.2 FRI-LDT

FRI low degree testing.
Both P and V have oracle access to function f .

V wants to test if f is polynomial with deg(f) ≤ d.
Let f0(x) = f(x).
Each polynomial f(x) of degree that is a power of 2, can be written as

f(x) = fL(x2) + xfR(x2)

for some polynomials fL, fR of degree deg(f)
2 , each one containing the even and

odd degree coefficients as follows:

fL(x) =

d+1
2 −1∑
0

c2ix
i, fR(x) =

d+1
2 −1∑
0

c2i+1x
i

2

eg. for f(x) = x4 + x3 + x2 + x+ 1,

fL(x) = x2 + x+ 1

fR(x) = x+ 1

}
f(x) = fL(x2) + x · fR(x2)

= (x2)2 + (x2) + 1 + x · ((x2) + 1)

= x4 + x2 + 1 + x3 + x

Proof generation (Commitment phase) P starts from f(x), and for i = 0
sets f0(x) = f(x).

1. ∀ i ∈ {0, log(d)}, with d = deg f(x),
P computes fL

i (x), fR
i (x) for which

fi(x) = fL
i (x

2) + xfR
i (x2) (eq. Ai)

holds.

2. V sends challenge αi ∈ F

3. P commits to the random linear combination fi+1, for

fi+1(x) = fL
i (x) + αif

R
i (x) (eq. Bi)

4. P sets fi(x) := fi+1(x) and starts again the iteration.

Note on step 3: when we say ”commits”, this means that the prover P
evaluates fi+1(x) at the (ρ−1 · d)-sized evaluation domain D (ie. fi+1(x)|D),
and constructs a merkle tree with the evaluations as leaves.

Notice that at each step, deg(fi) halves with respect to deg(fi−1).
This is done until the last step, where fL

i (x), fR
i (x) are constant (degree 0

polynomials). For which P does not commit but gives their values directly to
V.

(Query phase) P would receive a challenge z ∈ D set by V (where D
is the evaluation domain, D ⊂ F), and P would open the commitments at

{z2i ,−z2
i} for each step i. (Recall, ”opening” means that would provide a

proof (MerkleProof) of it).

Data sent from P to V

Commitments: {Comm(fi)}log(d)0

eg. {Comm(f0), Comm(f1), Comm(f2), ..., Comm(flog(d))}

3

Openings: {fi(z2
i

), fi(−(z2
i

))}log(d)0

for a challenge z ∈ D set by V
eg. f0(z), f0(−z), f1(z

2), f1(−z2), f2(z
4), f2(−z4), f3(z

8), f3(−z8), . . .

Constant values of last iteration: {fL
k , fR

k }, for k = log(d)

Verification V receives:

Commitments: Comm(fi), ∀i ∈ {0, log(d)}

Openings: {oi, o′i} = {fi(z2
i

), fi(−(z2
i

))}, ∀i ∈ {0, log(d)}
Constant vals: {fL

k , fR
k }

For all i ∈ {0, log(d)}, V knows the openings at z2
i

and −(z2
i

) for

Comm(fi(x)), which are oi = fi(z
2i) and o′i = fi(−(z2

i

)) respectively.
V, from (eq. Ai), knows that

fi(x) = fL
i (x

2) + xfR
i (x2)

should hold, thus
fi(z) = fL

i (z
2) + zfR

i (z2)

where fi(z) is known, but f
L
i (z

2), fR
i (z2) are unknown. But, V also knows the

value for fi(−z), which can be represented as

fi(−z) = fL
i (z

2)− zfR
i (z2)

(note that when replacing x by −z, it loses the negative in the power, not in
the linear combination).

Thus, we have the system of independent linear equations

fi(z) = fL
i (z

2) + zfR
i (z2)

fi(−z) = fL
i (z

2)− zfR
i (z2)

for which V will find the value of fL
i (z

2i), fR
i (z2

i

). Equivalently it can be
represented by (

1 z
1 −z

)(
fL
i (z

2)
fR
i (z2)

)
=

(
fi(z)
fi(−z)

)
where V will find the values of fL

i (z
2i), fR

i (z2
i

) being

fL
i (z

2i) =
fi(z) + fi(−z)

2

fR
i (z2

i

) =
fi(z)− fi(−z)

2z

4

Once, V has computed fL
i (z

2i), fR
i (z2

i

), can use them to compute the linear
combination of

fi+1(z
2i) = fL

i (z
2i) + αif

R
i (z2

i

)

obtaining then fi+1(z
2i). This comes from (eq. Bi).

Now, V checks that the obtained fi+1(z
2i) is equal to the received opening

oi+1 = fi+1(z
2i) from the commitment done by P. V checks also the commitment

of Comm(fi+1(x)) for the opening oi+1 = fi+1(z
2i).

If the checks pass, V is convinced that f1(x) was committed honestly.
Now, sets i := i+ 1 and starts a new iteration.
For the last iteration, V checks that the obtained fL

i (z
2i), fR

i (z2
i

) are equal
to the constant values {fL

k , fR
k } received from P.

It needs log(d) iterations, and the number of queries (commitments + open-
ings sent and verified) needed is 2 · log(d).

2.3 Parameters

P commits to fi restricted to a subfield F0 ⊂ F. Let 0 < ρ < 1 be the rate of
the code, such that

|F0| = ρ−1 · d

Thm 2.1. For δ ∈ (0, 1−√
ρ), we have that if V accepts, then w.v.h.p. (with

very high probability) ∆(f0, pd) ≤ δ.

3 FRI as polynomial commitment scheme

This section overviews the trick from [4] to convert FRI into a polynomial com-
mitment.

Want to check that the evaluation of f(x) at r is f(r), for r /∈ D, r ∈R F;
which is equivalent to proving that ∃ Q ∈ F[x] with deg(Q) = d− 1, such that

f(x)− f(r) = Q(x) · (x− r)

note that f(x)− f(r) evaluated at r is 0, so (x− r)|(f(x)− f(r)), in other
words (f(x)− f(r)) is a multiple of (x− r) for a polynomial Q(x).

Let us define g(x) = f(x)−f(r)
x−r .

Prover uses FRI-LDT 2.2 to commit to g(x), and then prove w.v.h.p that
deg(g) ≤ d− 1 (⇐⇒ ∆(g, pd−1 ≤ δ).

Prover was already proving that deg(f) ≤ d.
Now, the missing thing to prove is that g(x) has the right shape. We can

relate g to f as follows: V does the normal FRI-LDT, but in addition, at the
first iteration: V has f(z) and g(z) openings, so can verify

g(z) = (f(z)− f(r)) · (z − r)−1

5

4 STIR (main idea)

Update from 2024-03-22, notes from Héctor Masip Ardevol (https://hecmas.github.io)
explanations.

Let p ∈ F[x]<n.
In FRI we decompose p(x) as

p(x) = pe(x
2) + x · po(x2)

with pe, po ∈ F [x]<n containing the even and odd powers respectively.
The next FRI polynomial is

p1(x) = pe(x) + αpo(x)

for α ∈R F.
In STIR, this would be q(x) = x2,

Q(z, y) = pe(y) + z · po(y)

and then, p(x) = Q(x, q(x)). And Q fullfills the degree from Fact 4.6 from the
STIR paper.

We can generalize to a q with bigger degree, or with another shape, and
adapting Q on the choice of q.

eg. for q(x) = x3, we can take

Q(z, y) = p1(y) + z · p2(y) + z2 · p3(y)

with p1, p2, p3 ∈ F[x]<n/3 with coefficients taken every 3 powers alternating.

References

[1] Vincenzo Iovino. https://sites.google.com/site/vincenzoiovinoit/.

[2] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast
reed-solomon interactive oracle proofs of proximity, 2018. https://eccc.

weizmann.ac.il/report/2017/134/.

[3] Ulrich Haböck. A summary on the fri low degree test. Cryptology ePrint
Archive, Paper 2022/1216, 2022. https://eprint.iacr.org/2022/1216.

[4] Alexander Vlasov and Konstantin Panarin. Transparent polynomial commit-
ment scheme with polylogarithmic communication complexity. Cryptology
ePrint Archive, Paper 2019/1020, 2019. https://eprint.iacr.org/2019/
1020.

[5] https://github.com/arnaucube/fri-commitment.

[6] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. STIR:
Reed–solomon proximity testing with fewer queries. Cryptology ePrint
Archive, Paper 2024/390, 2024. https://eprint.iacr.org/2024/390.

[7] Héctor Masip Ardevol. https://hecmas.github.io.

6

https://hecmas.github.io/
https://sites.google.com/site/vincenzoiovinoit/
https://eccc.weizmann.ac.il/report/2017/134/
https://eccc.weizmann.ac.il/report/2017/134/
https://eprint.iacr.org/2022/1216
https://eprint.iacr.org/2019/1020
https://eprint.iacr.org/2019/1020
https://github.com/arnaucube/fri-commitment
https://eprint.iacr.org/2024/390
https://hecmas.github.io

	Preliminaries
	General degree d test

	FRI protocol
	Intuition
	FRI-LDT
	Parameters

	FRI as polynomial commitment scheme
	STIR (main idea)

