Notes on FRI and STIR

arnaucube

February 2023

Abstract

	Notes taken from Vincenzo Iovino [1] explanations about FRI [2], [3],	
	 [4]. These notes are for self-consumption, are not complete, don't include all the steps neither all the proofs. An implementation of FRI can be found at https://github.com/arnaucube/fri-commitment [5]. Undeta(2024.02.22): notes on STIP. [c] from employed integers by U(eter. 	
C	Masip Ardevol [7].	
U		
1	Preliminaries	1
	1.1 General degree d test	1
2	FRI protocol	2
	2.1 Intuition	2
	2.2 FRI-LDT	2

3	FRI as polynomial commitment sch	eme	
---	----------------------------------	-----	--

5

 $\mathbf{5}$

6

. .

4 STIR (main idea)

Preliminaries 1

General degree d test 1.1

Query at points $\{x_i\}_0^{d+1}$, z (with rand $z \in \mathbb{F}$). Interpolate p(x) at $\{f(x_i)\}_0^{d+1}$ to reconstruct the unique polynomial p of degree d such that $p(x_i) = f(x_i) \forall i = 1$ $1, \ldots, d + 1.$

V checks p(z) = f(z), if the check passes, then V is convinced with high probability.

This needs d + 2 queries, is linear, $\mathcal{O}(n)$. With FRI we will have the test in $\mathcal{O}(\log d).$

2 FRI protocol

Allows to test if a function f is a poly of degree $\leq d$ in $\mathcal{O}(\log d)$.

Note: "P sends f(x) to V", "sends", in the ideal IOP model means that all the table of f(x) is sent, in practice is sent a commitment to f(x).

2.1 Intuition

V wants to check that two functions g, h are both polynomials of degree $\leq d$. Consider the following protocol:

- 1. V sends $\alpha \in \mathbb{F}$ to P.
- 2. P sends $f(x) = g(x) + \alpha h(x)$ to V.
- 3. V queries f(r), g(r), h(r) for rand $r \in \mathbb{F}$.
- 4. V checks $f(r) = g(r) + \alpha h(r)$. (Schwartz-Zippel lema). If holds, V can be certain that $f(x) = g(x) + \alpha h(x)$.
- 5. P proves that $deg(f) \leq d$.
- 6. If V is convinced that $deg(f) \leq d$, V believes that both g, h have $deg \leq d$.

With high probability, α will not cancel the coeffs with $deg \ge d+1$.

Let $g(x) = a \cdot x^{d+1}$, $h(x) = b \cdot x^{d+1}$, and set $f(x) = g(x) + \alpha h(x)$. Imagine that P can chose α such that $ax^{d+1} + \alpha \cdot bx^{d+1} = 0$, then, in f(x) the coefficients of degree d + 1 would cancel.

Here, P proves g, h both have $deg \leq d$, but instead of doing $2 \cdot (d+2)$ queries (d+2 for g, and d+2 for h), it is done in d+2 queries (for f). So we halved the number of queries.

2.2 FRI-LDT

FRI low degree testing.

Both P and V have oracle access to function f.

V wants to test if f is polynomial with $deg(f) \le d$.

Let $f_0(x) = f(x)$.

Each polynomial f(x) of degree that is a power of 2, can be written as

$$f(x) = f^L(x^2) + x f^R(x^2)$$

for some polynomials f^L , f^R of degree $\frac{deg(f)}{2}$, each one containing the even and odd degree coefficients as follows:

$$f^{L}(x) = \sum_{0}^{\frac{d+1}{2}-1} c_{2i}x^{i}, \quad f^{R}(x) = \sum_{0}^{\frac{d+1}{2}-1} c_{2i+1}x^{i}$$

eg. for $f(x) = x^4 + x^3 + x^2 + x + 1$,

$$\begin{cases} f^{L}(x) = x^{2} + x + 1 \\ f^{R}(x) = x + 1 \end{cases} f(x) = f^{L}(x^{2}) + x \cdot f^{R}(x^{2}) \\ = (x^{2})^{2} + (x^{2}) + 1 + x \cdot ((x^{2}) + 1) \\ = x^{4} + x^{2} + 1 + x^{3} + x \end{cases}$$

Proof generation (Commitment phase) P starts from f(x), and for i = 0 sets $f_0(x) = f(x)$.

1. $\forall i \in \{0, log(d)\}$, with d = deg f(x), P computes $f_i^L(x)$, $f_i^R(x)$ for which

$$f_i(x) = f_i^L(x^2) + x f_i^R(x^2)$$
 (eq. A_i)

holds.

- 2. V sends challenge $\alpha_i \in \mathbb{F}$
- 3. P commits to the random linear combination f_{i+1} , for

$$f_{i+1}(x) = f_i^L(x) + \alpha_i f_i^R(x)$$
 (eq. B_i)

4. P sets $f_i(x) := f_{i+1}(x)$ and starts again the iteration.

Note on step 3: when we say "commits", this means that the prover P evaluates $f_{i+1}(x)$ at the $(\rho^{-1} \cdot d)$ -sized evaluation domain D (i.e. $f_{i+1}(x)|_D$), and constructs a merkle tree with the evaluations as leaves.

Notice that at each step, $deg(f_i)$ halves with respect to $deg(f_{i-1})$.

This is done until the last step, where $f_i^L(x)$, $f_i^R(x)$ are constant (degree 0 polynomials). For which P does not commit but gives their values directly to V.

(Query phase) P would receive a challenge $z \in D$ set by V (where D is the evaluation domain, $D \subset \mathbb{F}$), and P would open the commitments at $\{z^{2^i}, -z^{2^i}\}$ for each step *i*. (Recall, "opening" means that would provide a proof (MerkleProof) of it).

Data sent from P to V

Commitments: $\{Comm(f_i)\}_0^{log(d)}$ eg. $\{Comm(f_0), Comm(f_1), Comm(f_2), ..., Comm(f_{log(d)})\}$ Openings: $\{f_i(z^{2^i}), f_i(-(z^{2^i}))\}_0^{\log(d)}$ for a challenge $z \in D$ set by V eg. $f_0(z), f_0(-z), f_1(z^2), f_1(-z^2), f_2(z^4), f_2(-z^4), f_3(z^8), f_3(-z^8), \dots$

Constant values of last iteration: $\{f_k^L, f_k^R\}$, for k = log(d)

Verification V receives:

Commitments:
$$Comm(f_i), \forall i \in \{0, log(d)\}$$

Openings: $\{o_i, o'_i\} = \{f_i(z^{2^i}), f_i(-(z^{2^i}))\}, \forall i \in \{0, log(d)\}$
Constant vals: $\{f_k^L, f_k^R\}$

For all $i \in \{0, \log(d)\}$, V knows the openings at z^{2^i} and $-(z^{2^i})$ for $Comm(f_i(x))$, which are $o_i = f_i(z^{2^i})$ and $o'_i = f_i(-(z^{2^i}))$ respectively. V, from (eq. A_i), knows that

$$f_i(x) = f_i^L(x^2) + x f_i^R(x^2)$$

should hold, thus

$$f_i(z) = f_i^L(z^2) + z f_i^R(z^2)$$

where $f_i(z)$ is known, but $f_i^L(z^2)$, $f_i^R(z^2)$ are unknown. But, V also knows the value for $f_i(-z)$, which can be represented as

$$f_i(-z) = f_i^L(z^2) - z f_i^R(z^2)$$

(note that when replacing x by -z, it loses the negative in the power, not in the linear combination).

Thus, we have the system of independent linear equations

$$f_i(z) = f_i^L(z^2) + z f_i^R(z^2)$$

$$f_i(-z) = f_i^L(z^2) - z f_i^R(z^2)$$

for which V will find the value of $f_i^L(z^{2^i})$, $f_i^R(z^{2^i})$. Equivalently it can be represented by

$$\begin{pmatrix} 1 & z \\ 1 & -z \end{pmatrix} \begin{pmatrix} f_i^L(z^2) \\ f_i^R(z^2) \end{pmatrix} = \begin{pmatrix} f_i(z) \\ f_i(-z) \end{pmatrix}$$

where V will find the values of $f_i^L(z^{2^i}), f_i^R(z^{2^i})$ being

$$\begin{split} f_i^L(z^{2^i}) &= \frac{f_i(z) + f_i(-z)}{2} \\ f_i^R(z^{2^i}) &= \frac{f_i(z) - f_i(-z)}{2z} \end{split}$$

Once, V has computed $f_i^L(z^{2^i})$, $f_i^R(z^{2^i})$, can use them to compute the linear combination of

$$f_{i+1}(z^{2^{i}}) = f_{i}^{L}(z^{2^{i}}) + \alpha_{i}f_{i}^{R}(z^{2^{i}})$$

obtaining then $f_{i+1}(z^{2^i})$. This comes from (eq. B_i).

Now, V checks that the obtained $f_{i+1}(z^{2^i})$ is equal to the received opening $o_{i+1} = f_{i+1}(z^{2^i})$ from the commitment done by P. V checks also the commitment of $Comm(f_{i+1}(x))$ for the opening $o_{i+1} = f_{i+1}(z^{2^i})$.

If the checks pass, V is convinced that $f_1(x)$ was committed honestly.

Now, sets i := i + 1 and starts a new iteration.

For the last iteration, V checks that the obtained $f_i^L(z^{2^i})$, $f_i^R(z^{2^i})$ are equal to the constant values $\{f_k^L, f_k^R\}$ received from P.

It needs log(d) iterations, and the number of queries (commitments + openings sent and verified) needed is $2 \cdot log(d)$.

2.3 Parameters

P commits to f_i restricted to a subfield $F_0 \subset \mathbb{F}$. Let $0 < \rho < 1$ be the *rate* of the code, such that

$$|F_0| = \rho^{-1} \cdot d$$

Thm 2.1. For $\delta \in (0, 1 - \sqrt{\rho})$, we have that if V accepts, then w.v.h.p. (with very high probability) $\Delta(f_0, p^d) \leq \delta$.

3 FRI as polynomial commitment scheme

This section overviews the trick from [4] to convert FRI into a polynomial commitment.

Want to check that the evaluation of f(x) at r is f(r), for $r \notin D, r \in \mathbb{R} \mathbb{F}$; which is equivalent to proving that $\exists Q \in \mathbb{F}[x]$ with deg(Q) = d - 1, such that

$$f(x) - f(r) = Q(x) \cdot (x - r)$$

note that f(x) - f(r) evaluated at r is 0, so (x - r)|(f(x) - f(r))), in other words (f(x) - f(r)) is a multiple of (x - r) for a polynomial Q(x).

Let us define $g(x) = \frac{f(x) - f(r)}{r - r}$.

Prover uses FRI-LDT 2.2 to commit to g(x), and then prove w.v.h.p that $deg(g) \leq d-1 \iff \Delta(g, p^{d-1} \leq \delta).$

Prover was already proving that $deg(f) \leq d$.

Now, the missing thing to prove is that g(x) has the right shape. We can relate g to f as follows: V does the normal FRI-LDT, but in addition, at the first iteration: V has f(z) and g(z) openings, so can verify

$$g(z) = (f(z) - f(r)) \cdot (z - r)^{-1}$$

4 STIR (main idea)

Update from 2024-03-22, notes from Héctor Masip Ardevol (https://hecmas.github.io) explanations.

Let $p \in \mathbb{F}[x]^{< n}$. In FRI we decompose p(x) as

$$p(x) = p_e(x^2) + x \cdot p_o(x^2)$$

with $p_e, p_o \in F[x]^{< n}$ containing the even and odd powers respectively. The next FRI polynomial is

$$p_1(x) = p_e(x) + \alpha p_o(x)$$

for $\alpha \in \mathbb{F}$.

In STIR, this would be $q(x) = x^2$,

$$Q(z,y) = p_e(y) + z \cdot p_o(y)$$

and then, p(x) = Q(x, q(x)). And Q fulfills the degree from Fact 4.6 from the STIR paper.

We can generalize to a q with bigger degree, or with another shape, and adapting Q on the choice of q.

eg. for $q(x) = x^3$, we can take

$$Q(z, y) = p_1(y) + z \cdot p_2(y) + z^2 \cdot p_3(y)$$

with $p_1, p_2, p_3 \in \mathbb{F}[x]^{< n/3}$ with coefficients taken every 3 powers alternating.

References

- [1] Vincenzo Iovino. https://sites.google.com/site/vincenzoiovinoit/.
- [2] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon interactive oracle proofs of proximity, 2018. https://eccc. weizmann.ac.il/report/2017/134/.
- [3] Ulrich Haböck. A summary on the fri low degree test. Cryptology ePrint Archive, Paper 2022/1216, 2022. https://eprint.iacr.org/2022/1216.
- [4] Alexander Vlasov and Konstantin Panarin. Transparent polynomial commitment scheme with polylogarithmic communication complexity. Cryptology ePrint Archive, Paper 2019/1020, 2019. https://eprint.iacr.org/2019/ 1020.
- [5] https://github.com/arnaucube/fri-commitment.
- [6] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. STIR: Reed-solomon proximity testing with fewer queries. Cryptology ePrint Archive, Paper 2024/390, 2024. https://eprint.iacr.org/2024/390.
- [7] Héctor Masip Ardevol. https://hecmas.github.io.