\documentclass{article} \usepackage[utf8]{inputenc} \usepackage{amsfonts} \usepackage{amsthm} \usepackage{amsmath} \usepackage{mathtools} \usepackage{enumerate} \usepackage{hyperref} \usepackage{xcolor} \usepackage{pgf-umlsd} % diagrams % message between threads % Example: % \bloodymess[delay]{sender}{message content}{receiver}{DIR}{start note}{end note} \newcommand{\bloodymess}[7][0]{ \stepcounter{seqlevel} \path (#2)+(0,-\theseqlevel*\unitfactor-0.7*\unitfactor) node (mess from) {}; \addtocounter{seqlevel}{#1} \path (#4)+(0,-\theseqlevel*\unitfactor-0.7*\unitfactor) node (mess to) {}; \draw[->,>=angle 60] (mess from) -- (mess to) node[midway, above] {#3}; \if R#5 \node (\detokenize{#3} from) at (mess from) {\llap{#6~}}; \node (\detokenize{#3} to) at (mess to) {\rlap{~#7}}; \else\if L#5 \node (\detokenize{#3} from) at (mess from) {\rlap{~#6}}; \node (\detokenize{#3} to) at (mess to) {\llap{#7~}}; \else \node (\detokenize{#3} from) at (mess from) {#6}; \node (\detokenize{#3} to) at (mess to) {#7}; \fi \fi } % prevent warnings of underfull \hbox: \usepackage{etoolbox} \apptocmd{\sloppy}{\hbadness 4000\relax}{}{} \theoremstyle{definition} \newtheorem{definition}{Def}[section] \newtheorem{theorem}[definition]{Thm} % custom lemma environment to set custom numbers \newtheorem{innerlemma}{Lemma} \newenvironment{lemma}[1] {\renewcommand\theinnerlemma{#1}\innerlemma} {\endinnerlemma} \title{Notes on Nova} \author{arnaucube} \date{March 2023} \begin{document} \maketitle \begin{abstract} Notes taken while reading Nova \cite{cryptoeprint:2021/370} paper. Usually while reading papers I take handwritten notes, this document contains some of them re-written to $LaTeX$. The notes are not complete, don't include all the steps neither all the proofs. Thanks to \href{https://twitter.com/levs57}{Levs57}, \href{https://twitter.com/nibnalin}{Nalin Bhardwaj} and \href{https://twitter.com/cperezz19}{Carlos PĂ©rez} for clarifications on the Nova paper. \end{abstract} \tableofcontents \section{NIFS} \subsection{R1CS modification} \paragraph{R1CS} R1CS instance: $(A, B, C, io, m, n)$, where $io$ denotes the public input and output, $A, B, C \in \mathbb{F}^{m \times n}$, with $m \geq |io|+1$. R1CS is satisfied by a witness $w \in \mathbb{F}^{m-|io|-1}$ such that $$Az \circ Bz = Cz$$ where $z=(io, 1, w)$. \vspace{0.5cm} \textbf{Want}: merge 2 instances of R1CS with the same matrices into a single one. Each instance has $z_i = (W_i,~ x_i)$ (public witness, private values resp.). \paragraph{traditional R1CS} Merged instance with $z=z_1 + r z_2$, for rand $r$. But, since R1CS is not linear $\longrightarrow$ can not apply. eg. \begin{align*} Az \circ Bz &= A(z_1 + r z_2) \circ B (z_1 + r z_2)\\ &= A z_1 \circ B z_1 + r(A z_1 \circ B z_2 + A z_2 \circ B z_1) + r^2 (A z_2 \circ B z_2)\\ &\neq Cz \end{align*} $\longrightarrow$ introduce error vector $E \in \mathbb{F}^m$, which absorbs the cross-temrs generated by folding. $\longrightarrow$ introduce scalar $u$, which absorbs an extra factor of $r$ in $C z_1 + r^2 C z_2$ and in $z=(W, x, 1+r\cdot 1)$. \paragraph{Relaxed R1CS} \begin{align*} &u=u_1+r u_2\\ &E=E_1 + r (A z_1 \circ B z_2 + A z_2 \circ B z_1 - u_1 C z_2 - u_2 C z_1) + r^2 E_2\\ &Az \circ Bz = uCz + E,~~ with~ z=(W,~x,~u) \end{align*} where R1CS set $E=0,~u=1$. \begin{align*} Az \circ Bz &= A z_1 \circ B z_1 + r(A z_1 \circ B z_2 + A z_2 \circ B z_1) + r^2 (A z_2 \circ B z_2)\\ &= (u_1 C z_1 + E_1) + r (A z_1 \circ B z_2 + A z_2 \circ B z_1) + r^2 (u_2 C z_2 + E_2)\\ &= u_1 C z_1 + \underbrace{E_1 + r(A z_1 \circ B z_2 + A z_2 \circ B z_1) + r^2 E_2}_\text{E} + r^2 u_2 C z_2\\ &= u_1 C z_1 + r^2 u_2 C z_2 + E\\ &= (u_1 + r u_2) \cdot C \cdot (z_1 + r z_2) + E\\ &= uCz + E \end{align*} For R1CS matrices $(A,~B,~C)$, the folded witness $W$ is a satisfying witness for the folded instance $(E,~u,~x)$. \vspace{20px} Problem: not non-trivial, and not zero-knowledge. Solution: use polynomial commitment with hiding, binding, succintness and additively homomorphic properties. \paragraph{Committed Relaxed R1CS} Instance for a Committed Relaxed R1CS\\ $(\overline{E}, u, \overline{W}, x)$, satisfyied by a witness $(E, r_E, W, r_W)$ such that \begin{align*} &\overline{E} = Com(E, r_E)\\ &\overline{W} = Com(E, r_W)\\ &Az \circ Bz = uCz+E,~~ where~z=(W, x, u) \end{align*} \subsection{Folding scheme for committed relaxed R1CS} V and P take two \emph{committed relaxed R1CS} instances \begin{align*} \varphi_1&=(\overline{E}_1, u_1, \overline{W}_1, x_1)\\ \varphi_2&=(\overline{E}_2, u_2, \overline{W}_2, x_2) \end{align*} P additionally takes witnesses to both instances \begin{align*} (E_1, r_{E_1}, W_1, r_{W_1})\\ (E_2, r_{E_2}, W_2, r_{W_2}) \end{align*} Let $Z_1 = (W_1, x_1, u_1)$ and $Z_2 = (W_2, x_2, u_2)$. % \paragraph{Protocol} \begin{enumerate} \item P send $\overline{T} = Com(T, r_T)$,\\ where $T=A z_1 \circ B z_1 + A z_2 \circ B z_2 - u_1 C z_1 - u_2 C z_2$\\ and rand $r_T \in \mathbb{F}$ \item V sample random challenge $r \in \mathbb{F}$ \item V, P output the folded instance $\varphi = (\overline{E}, u, \overline{W}, x)$ \begin{align*} &\overline{E}=\overline{E}_1 + r \overline{T} + r^2 \overline{E}_2\\ &u = u_1 + r u_2\\ &\overline{W} = \overline{W}_1 + r \overline{W}_2\\ &x = x_1 + r x_2 \end{align*} \item P outputs the folded witness $(E, r_E, W, r_W)$ \begin{align*} &E = E_1 + r T + r^2 E_2\\ &r_E = r_{E_1} + r \cdot r_T + r^2 r_{E_2}\\ &W=W_1 + r W_2\\ &r_W = r_{W_1} + r \cdot r_{W_2} \end{align*} \end{enumerate} P will prove that knows the valid witness $(E, r_E, W, r_W)$ for the committed relaxed R1CS without revealing its value. \begin{center} \begin{sequencediagram} \newinst[1]{p}{Prover} \newinst[3]{v}{Verifier} \bloodymess[1]{p}{$\overline{T}$}{v}{R}{ \shortstack{ $T=A z_1 \circ B z_1 + A z_2 \circ B z_2 - u_1 C z_2 - u_2 C z_2$\\ $\overline{T}=Commit(T, r_T)$ } }{ \shortstack{ $r \in^R \mathbb{F}_p$\\ $\overline{E} = \overline{E}_1 + r \overline{T} + r^2 \overline{E}_2$\\ $u= u_1 + r u_2$\\ $\overline{W} = \overline{W}_1 + r \overline{W}_2$\\ $\overline{x} = \overline{x}_1 + r \overline{x}_2$\\ $\varphi=(\overline{E}, u, \overline{W}, x)$ } } \bloodymess[1]{v}{$r$}{p}{L}{}{ \shortstack{ $E = E_1 + r T + r^2 E_2$\\ $u= u_1 + r u_2$\\ $W = W_1 + r W_2$\\ $r_{W} = r_{W_1} + r r_{W_2}$\\ $(E, r_E, W, r_W)$ } } \end{sequencediagram} \end{center} The previous protocol achieves non-interactivity via Fiat-Shamir transform, obtaining a \emph{Non-Interactive Folding Scheme for Committed Relaxed R1CS}. Note: the paper later uses $\mathsf{u}_i,~ \mathsf{U}_i$ for the two inputed $\varphi_1,~ \varphi_2$, and later $\mathsf{u}_{i+1}$ for the outputed $\varphi$. Also, the paper later uses $\mathsf{w},~ \mathsf{W}$ to refer to the witnesses of two folded instances (eg. $\mathsf{w}=(E, r_E, W, r_W)$). \subsection{NIFS} \underline{fold witness, $(pk, (u_1, w_1), (u_2, w_2))$}: \begin{enumerate} \item $T=A z_1 \circ B z_1 + A z_2 \circ B z_2 - u_1 C z_2 - u_2 C z_2$ \item $\overline{T}=Commit(T, r_T)$ % \item output the folded instance $\varphi = (\overline{E}, u, \overline{W}, x)$ % \begin{align*} % &\overline{E}=\overline{E}_1 + r \overline{T} + r^2 \overline{E}_2\\ % &u = u_1 + r u_2\\ % &\overline{W} = \overline{W}_1 + r \overline{W}_2\\ % &x = x_1 + r x_2 % \end{align*} \item output the folded witness $(E, r_E, W, r_W)$ \begin{align*} &E = E_1 + r T + r^2 E_2\\ &r_E = r_{E_1} + r \cdot r_T + r^2 r_{E_2}\\ &W=W_1 + r W_2\\ &r_W = r_{W_1} + r \cdot r_{W_2} \end{align*} \end{enumerate} \underline{fold instances $(\varphi_1, \varphi_2) \rightarrow \varphi$, $(vk, u_1, u_2, \overline{E}_1, \overline{E}_2, \overline{W}_1, \overline{W}_2, \overline{T})$}:\\ V compute folded instance $\varphi = (\overline{E}, u, \overline{W}, x)$ \begin{align*} &\overline{E}=\overline{E}_1 + r \overline{T} + r^2 \overline{E}_2\\ &u = u_1 + r u_2\\ &\overline{W} = \overline{W}_1 + r \overline{W}_2\\ &x = x_1 + r x_2 \end{align*} \section{Nova} IVC (Incremental Verifiable Computation) scheme for a non-interactive folding scheme. \subsection{IVC proofs} Allows prover to show $z_n = F^{(n)}(z_0)$, for some count $n$, initial input $z_0$, and output $z_n$.\\ $F$: program function (polynomial-time computable)\\ $F'$: augmented function, invokes $F$ and additionally performs fold-related stuff. \vspace{0.5cm} Two committed relaxed R1CS instances:\\ $\mathsf{U}_i$: represents the correct execution of invocations $1, \ldots, i-1$ of $F'$\\ $\mathsf{u}_i$: represents the correct execution of invocations $i$ of $F'$ \paragraph{Simplified version of $F'$ for intuition} \vspace{0.5cm} $F'$ performs two tasks: \begin{enumerate}[i.] \item execute a step of the incremental computation: instance $\mathsf{u}_i$ contains $z_i$, used to output $z_{i+1}=F(z_i)$ \item invokes the verifier of the non-interactive folding scheme to fold the task of checking $\mathsf{u}_i$ and $\mathsf{U}_i$ into the task of checking a single instance $\mathsf{U}_{i+1}$ \end{enumerate} \vspace{0.5cm} $F'$ proves that: \begin{enumerate} \item $\exists ( (i, z_0, z_i, \mathsf{u}_i, \mathsf{U}_i), \mathsf{U}_{i+1}, \overline{T})$ such that \begin{enumerate}[i.] \item $\mathsf{u}_i.x = H(vk, i, z_0, z_i, \mathsf{U}_i)$ \item $h_{i+1} = H(vk, i+1, z_0, F(z_i), \mathsf{U}_{i+1})$ \item $\mathsf{U}_{i+1} = NIFS.V(vk, \mathsf{U}_i, \mathsf{u}_i, \overline{T})$ \end{enumerate} \item $F'$ outputs $h_{i+1}$ \end{enumerate} $F'$ is described as follows:\\ \underline{$F'(vk, \mathsf{U}_i, \mathsf{u}_i, (i, z_0, z_i), w_i, \overline{T}) \rightarrow x$}:\\ if $i=0$, output $H(vk, 1, z_0, F(z_0, w_i), \mathsf{u}_{\bot})$\\ otherwise \begin{enumerate} \item check $\mathsf{u}_i.x = H(vk, i, z_0, z_i, \mathsf{U}_i)$ \item check $(\mathsf{u}_i.\overline{E}, \mathsf{u}_i.u) = (\mathsf{u}_{\bot}.\overline{E}, 1)$ \item compute $\mathsf{U}_{i+1} \leftarrow NIFS.V(vk, U, u, \overline{T})$ \item output $H(vk, i+1, z_0, F(z_i, w_i), \mathsf{U}_{i+1})$ \end{enumerate} % TODO add diagram \paragraph{IVC Proof} iteration $i+1$: prover runs $F'$ and computes $\mathsf{u}_{i+1},~ \mathsf{U}_{i+1}$, with corresponding witnesses $\mathsf{w}_{i+1},~ \mathsf{W}_{i+1}$. $(\mathsf{u}_{i+1},~ \mathsf{U}_{i+1})$ attest correctness of $i+1$ invocations of $F'$, the IVC proof is $\pi_{i+1} = ( (\mathsf{U}_{i+1}, \mathsf{W}_{i+1}), (\mathsf{u}_{i+1}, \mathsf{w}_{i+1}))$. \vspace{0.5cm} \underline{$P(pk, (i, z_0, z_i), \mathsf{w}_i, \pi_i) \rightarrow \pi_{i+1}$}:\\ Parse $\pi_i = ( (\mathsf{U}_i, \mathsf{W}_i), (\mathsf{u}_i, \mathsf{w}_i))$, then \begin{enumerate} \item if $i=0$: $(\mathsf{U}_{i+1}, \mathsf{W}_{i+1}, \overline{T}) \leftarrow (\mathsf{u}_{\perp}, \mathsf{w}_{\perp}, \mathsf{u}_{\perp}.{\overline{E}})$\\ otherwise: $(\mathsf{U}_{i+1}, \mathsf{W}_{i+1}, \overline{T}) \leftarrow NIFS.P(pk, (\mathsf{U}_i, \mathsf{W}_i), (\mathsf{u}_i, \mathsf{w}_i))$ \item compute $(\mathsf{u}_{i+1}, \mathsf{w}_{i+1}) \leftarrow trace(F', (vk, \mathsf{U}_i, \mathsf{u}_i, (i, z_0, z_i), \mathsf{w}_i, \overline{T}))$ \item output $\pi_{i+1} \leftarrow ((\mathsf{U}_{i+1}, \mathsf{W}_{i+1}), (\mathsf{u}_{i+1}, \mathsf{w}_{i+1}))$ \end{enumerate} \underline{$V(vk, (i, z_0, z_i), \pi_i) \rightarrow \{0,1\}$}: if $i=0$: check that $z_i=z_0$\\ otherwise, parse $\pi_i = ( (\mathsf{U}_i, \mathsf{W}_i), (\mathsf{u}_i, \mathsf{w}_i))$, then \begin{enumerate} \item check $\mathsf{u}_i.x = H(vk, i, z_0, z_i, \mathsf{U}_i)$ \item check $(\mathsf{u}_i.{\overline{E}}, \mathsf{u}_i.u) = (\mathsf{u}_{\perp}.{\overline{E}}, 1)$ \item check that $\mathsf{W}_i,~ \mathsf{w}_i$ are satisfying witnesses to $\mathsf{U}_i,~ \mathsf{u}_i$ respectively \end{enumerate} \vspace{0.5cm} \paragraph{A zkSNARK of a Valid IVC Proof} prover and verifier:\\ \underline{$P(pk, (i, z_0, z_i), \Pi) \rightarrow \pi$}:\\ if $i=0$, output $\perp$, otherwise:\\ parse $\Pi$ as $((\mathsf{U}, \mathsf{W}), (\mathsf{u}, \mathsf{w}))$ \begin{enumerate} \item compute $(\mathsf{U}', \mathsf{W}', \overline{T}) \leftarrow NIFS.P(pk_{NIFS}, (\mathsf{U,~W}), (\mathsf{u,~w}))$ \item compute $\pi_{\mathsf{u}'} \leftarrow zkSNARK.P(pk_{zkSNARK}, \mathsf{U}', \mathsf{W}')$ \item output $(\mathsf{U,~ u}, \overline{T}, \pi_{\mathsf{u}'})$ \end{enumerate} \underline{$V(vk, (i, z_0, z_i), \pi) \rightarrow \{0,1\}$}:\\ if $i=0$: check that $z_i=z_0$\\ parse $\pi$ as $(\mathsf{U}, \mathsf{u}, \overline{T}, \pi_{\mathsf{u}'})$ \begin{enumerate} \item check $\mathsf{u}.x = H(vk_{NIFS}, i, z_0, z_i, \mathsf{U})$ \item check $(\mathsf{u}.{\overline{E}}, \mathsf{u}.u) = (\mathsf{u}_{\perp}.{\overline{E}}, 1)$ \item compute $\mathsf{U}' \leftarrow NIFS.V(vk_{NIFS}, \mathsf{U}, \mathsf{u}, \overline{T})$ \item check $zkSNARK.V(vk_{zkSNARK}, \mathsf{U}', \pi_{\mathsf{u}'})=1$ \end{enumerate} \bibliography{paper-notes.bib} \bibliographystyle{unsrt} \end{document}