
Preliminaries Nova HyperNova Wrappup

HyperNova introduction

2023-07-25
0xPARC, London

1/19

https://0xparc.org

Preliminaries Nova HyperNova Wrappup

IVC

For a function F , with initial input z0, an IVC scheme allows a
prover to produce a proof πi for the statement zi = F (i)(z0), given
a proof πi−1 for the statement zi−1 = F (i−1)(z0)
TODO add draw TODO add reference to Valiant paper (2008)

2/19

Preliminaries Nova HyperNova Wrappup

Recursion before folding schemes

We used to use recursive SNARKs to achieve IVC.

◦ Prove verification in circuit: inside a circuit, verify another
proof

◦ eg. verifying a Groth16 proof inside a Groth16 circuit.

◦ Amortized accumulation

◦ eg. Halo

3/19

Preliminaries Nova HyperNova Wrappup

R1CS refresher

R1CS instance: ({A,B,C} ∈ Fm×n, io, m, n, l), such that for
z = (io ∈ Fl, 1, w ∈ Fm−l−1) ∈ Fm,

Az ◦Bz = Cz

Typically we use some scheme to prove that the previous equation
is fullfilled by some private w (eg. Groth16, Marlin, Spartan, etc).

4/19

Preliminaries Nova HyperNova Wrappup

Random linear combination

Combine 2 instances together through a random linear
comibnation, and the outputted instance will still satisfy the
relation.

◦ Have 2 values x1, x2.

◦ Set r ∈R F
◦ Compute x3 = x1 + r · x2.

Combined with homomorphic commitments

◦ We can do random linear combinations with the commitments
and their witnesses, and the output can still be opened

5/19

Preliminaries Nova HyperNova Wrappup

Random linear combination

Combine 2 instances together through a random linear
comibnation, and the outputted instance will still satisfy the
relation.

◦ Have 2 values x1, x2.

◦ Set r ∈R F
◦ Compute x3 = x1 + r · x2.

Combined with homomorphic commitments

◦ We can do random linear combinations with the commitments
and their witnesses, and the output can still be opened

5/19

Preliminaries Nova HyperNova Wrappup

Folding schemes

We’re not verifying the entire proof

◦ Take n instances and ’batch’ them together

◦ Folds k (eg. 2) instances (eg. R1CS instances) and their
respective witnesses into a signle one

◦ At the end of the chain of folds, we just prove that the last
fold is correct through a SNARK

◦ Which implies that all the previous folds were correct

In Nova: folding without a SNARK, we just reduce the satisfiability
of the 2 inputted instances to the satisfiability of the single
outputted one.
[TODO image of multiple folding iterations]

6/19

Preliminaries Nova HyperNova Wrappup

Folding schemes

We’re not verifying the entire proof

◦ Take n instances and ’batch’ them together

◦ Folds k (eg. 2) instances (eg. R1CS instances) and their
respective witnesses into a signle one

◦ At the end of the chain of folds, we just prove that the last
fold is correct through a SNARK

◦ Which implies that all the previous folds were correct

In Nova: folding without a SNARK, we just reduce the satisfiability
of the 2 inputted instances to the satisfiability of the single
outputted one.
[TODO image of multiple folding iterations]

6/19

Preliminaries Nova HyperNova Wrappup

Relaxed R1CS

We work with relaxed R1CS

Az ◦Bz = u · Cz + E

(= R1CS when u = 1, E = 0)

◦ main idea: allows us to fold, but accumulates cross terms

◦ when we do the relaxed of higher degree equations (eg.
plonkish), the cross terms grow (eg. Sangria with higher
degree gates)

7/19

Preliminaries Nova HyperNova Wrappup

Relaxed R1CS

We work with relaxed R1CS

Az ◦Bz = u · Cz + E

(= R1CS when u = 1, E = 0)

◦ main idea: allows us to fold, but accumulates cross terms

◦ when we do the relaxed of higher degree equations (eg.
plonkish), the cross terms grow (eg. Sangria with higher
degree gates)

7/19

Preliminaries Nova HyperNova Wrappup

NIFS - setup

V and P: committed relaxed R1CS instances

φ1 = (E1, u1, w1, x1)

φ2 = (E2, u2, w2, x2)

P: witnesses

(E1, rE1 , w1, rw1)

(E2, rE2 , w2, rw2)

Let z1 = (w1, x1, u1) and z2 = (w2, x2, u2).

8/19

Preliminaries Nova HyperNova Wrappup

NIFS

◦ V, P: folded instance φ = (E, u,w, x)

E = E1 + rT + r2E2

u = u1 + ru2

w = w1 + rw2

x = x1 + rx2

◦ P: folded witness (E, rE , w, rW)

E = E1 + rT + r2E2

rE = rE1 + r · rT + r2rE2

w = w1 + rw2

rW = rw1 + r · rw2

Note: T are the cross-terms comming from combining the two R1CS instances from

Az ◦Bz = A(z1 + r · z2) ◦B(z1 + rz2)

= Az1 ◦Bz1 + r(Az1 ◦Bz2 +Az2 ◦Bz1) + r2(Az2 ◦Bz2) = . . .

9/19

Preliminaries Nova HyperNova Wrappup

NIFS

◦ V, P: folded instance φ = (E, u,w, x)

E = E1 + rT + r2E2

u = u1 + ru2

w = w1 + rw2

x = x1 + rx2

◦ P: folded witness (E, rE , w, rW)

E = E1 + rT + r2E2

rE = rE1 + r · rT + r2rE2

w = w1 + rw2

rW = rw1 + r · rw2

Note: T are the cross-terms comming from combining the two R1CS instances from

Az ◦Bz = A(z1 + r · z2) ◦B(z1 + rz2)

= Az1 ◦Bz1 + r(Az1 ◦Bz2 +Az2 ◦Bz1) + r2(Az2 ◦Bz2) = . . .

9/19

Preliminaries Nova HyperNova Wrappup

NIFS

E = E1 + r (Az1 ◦Bz2 +Az2 ◦Bz1 − u1Cz2 − u2Cz1)︸ ︷︷ ︸
cross-terms

+r2E2

Az ◦Bz = uCz + E will hold for valid z (which comes from valid
z1, z2).
[TODO add image of function F’ with F inside with extra checks]

10/19

Preliminaries Nova HyperNova Wrappup

NIFS

Each fold: 2 ECAdd + 1 ECMul + 1 hash
20k R1CS constraints (using curve cycles)
(so folding makes sense when we have a circuit with more than 2 · 20k
constraints)

After all the folding iterations, Nova generates a SNARK proving
the last folding instance.
In Nova implementation, they use Spartan.

11/19

Preliminaries Nova HyperNova Wrappup

NIFS

Each fold: 2 ECAdd + 1 ECMul + 1 hash
20k R1CS constraints (using curve cycles)
(so folding makes sense when we have a circuit with more than 2 · 20k
constraints)

After all the folding iterations, Nova generates a SNARK proving
the last folding instance.
In Nova implementation, they use Spartan.

11/19

Preliminaries Nova HyperNova Wrappup

Benchmarks

Benchmarks that Oskar, Carlos, et al did during the Vietnam
residency in April https://hackmd.io/u3qM9s YR1emHZSg3jteQA

Size Constraints Time

2KB 883k 320ms
4KB 1.7m 521ms
8KB 3.4m 1s
16KB 6.8m 1.9s
32KB 13.7m 4.1s

eg. for 8kb, x100 Halo2 and Plonky2

(this is for the folding, without the last snark)

12/19

https://hackmd.io/u3qM9s_YR1emHZSg3jteQA?view

Preliminaries Nova HyperNova Wrappup

SuperNova

◦ iteration on Nova, combining different circuits in a single one
with selectors

◦ so we can work with a big circuit with subcircuits without
paying the whole size cost on each iteration

◦ in IVC terms: fold multiple Fi in a single F ′ (in Nova was a
single F in F ′)

This is useful for example for a VM, doing one Fi for each opcode

13/19

Preliminaries Nova HyperNova Wrappup

R1CS to CCS example

◦ Kind of a generalization of constraint systems

◦ Can translate R1CS,Plonk,AIR to CCS

CCS instance SCCS = (m,n,N, l, t, q, d,M, S, c)
where we have the same parameters than in SR1CS , but additionally:
t = |M |, q = |c| = |S|, d= max degree in each variable.

R1CS-to-CCS parameters n = n, m = m, N = N, l = l, t = 3, q = 2, d = 2,
M = {A,B,C}, S = {{0, 1}, {2}}, c = {1,−1}

The CCS relation check:

q−1∑
i=0

ci · ⃝j∈SiMj · z == 0

In our R1CS-to-CCS parameters is equivalent to

c0 · ((M0z) ◦ (M1z)) + c1 · (M2z) == 0

=⇒1 · ((Az) ◦ (Bz)) + (−1) · (Cz) == 0

=⇒((Az) ◦ (Bz))− (Cz) == 0

14/19

Preliminaries Nova HyperNova Wrappup

R1CS to CCS example

◦ Kind of a generalization of constraint systems

◦ Can translate R1CS,Plonk,AIR to CCS

CCS instance SCCS = (m,n,N, l, t, q, d,M, S, c)
where we have the same parameters than in SR1CS , but additionally:
t = |M |, q = |c| = |S|, d= max degree in each variable.

R1CS-to-CCS parameters n = n, m = m, N = N, l = l, t = 3, q = 2, d = 2,
M = {A,B,C}, S = {{0, 1}, {2}}, c = {1,−1}

The CCS relation check:

q−1∑
i=0

ci · ⃝j∈SiMj · z == 0

In our R1CS-to-CCS parameters is equivalent to

c0 · ((M0z) ◦ (M1z)) + c1 · (M2z) == 0

=⇒1 · ((Az) ◦ (Bz)) + (−1) · (Cz) == 0

=⇒((Az) ◦ (Bz))− (Cz) == 0

14/19

Preliminaries Nova HyperNova Wrappup

R1CS to CCS example

◦ Kind of a generalization of constraint systems

◦ Can translate R1CS,Plonk,AIR to CCS

CCS instance SCCS = (m,n,N, l, t, q, d,M, S, c)
where we have the same parameters than in SR1CS , but additionally:
t = |M |, q = |c| = |S|, d= max degree in each variable.

R1CS-to-CCS parameters n = n, m = m, N = N, l = l, t = 3, q = 2, d = 2,
M = {A,B,C}, S = {{0, 1}, {2}}, c = {1,−1}

The CCS relation check:

q−1∑
i=0

ci · ⃝j∈SiMj · z == 0

In our R1CS-to-CCS parameters is equivalent to

c0 · ((M0z) ◦ (M1z)) + c1 · (M2z) == 0

=⇒1 · ((Az) ◦ (Bz)) + (−1) · (Cz) == 0

=⇒((Az) ◦ (Bz))− (Cz) == 0

14/19

Preliminaries Nova HyperNova Wrappup

Multifolding

◦ Nova: 2-to-1 folding

◦ HyperNova: multifolding, k-to-1 folding

◦ We fold while through a SumCheck proving the correctness of
the fold

SumCheck’s polynomial work is trivial, most of the cost comes
from Poseidon hash in the transcript
[TODO WIP section]

15/19

Preliminaries Nova HyperNova Wrappup

Multifolding - Overview

1. V → P : γ ∈R F, β ∈R Fs

2. V : r′x ∈
R Fs

3. V ↔ P : sum-check protocol: c← ⟨P, V (r′x)⟩(g, s, d + 1,
∑

j∈[t]

γ
j · vj

︸ ︷︷ ︸
T

), where:

g(x) :=

 ∑
j∈[t]

γ
j · Lj(x)

︸ ︷︷ ︸

LCCCS check

+ γ
t+1 ·Q(x)︸ ︷︷ ︸
CCCS check

Lj(x) := ẽq(rx, x) ·

∑

y∈{0,1}s′
M̃j(x, y) · z̃1(y)

︸ ︷︷ ︸
LCCCS check

Q(x) :=ẽq(β, x) ·

q∑

i=1

ci ·
∏

j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)

︸ ︷︷ ︸

CCCS check

16/19

Preliminaries Nova HyperNova Wrappup

Multifolding - Overview

4. P → V : ((σ1, . . . , σt), (θ1, . . . , θt)), where ∀j ∈ [t],

σj =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1(y)

θj =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃2(y)

5. V: e1 ← ẽq(rx, r′x), e2 ← ẽq(β, r′x)
check:

c =

 ∑
j∈[t]

γ
j · e1 · σj

 + γ
t+1 · e2 ·

 q∑
i=1

ci ·
∏

j∈Si

θj

6. V → P : ρ ∈R F
7. V, P : output the folded LCCCS instance (C′, u′, x′, r′x, v′

1, . . . , v
′
t), where ∀i ∈ [t]:

C
′ ← C1 + ρ · C2

u
′ ← u + ρ · 1

x′ ← x1 + ρ · x2

v
′
i ← σi + ρ · θi

8. P : output folded witness and the folded r′w :

w̃
′ ← w̃1 + ρ · w̃2

r
′
w ← rw1

+ ρ · rw2

17/19

Preliminaries Nova HyperNova Wrappup

Mysteries & unsolved things

◦ how HyperNova compares to Protostar

◦ prover knows the full witness [TODO update/rm this]

[TODO WIP section]

18/19

Preliminaries Nova HyperNova Wrappup

Wrappup

◦ HyperNova: https://eprint.iacr.org/2023/573

◦ multifolding PoC on arkworks:
github.com/privacy-scaling-explorations/multifolding-poc

◦ PSE hypernova WIP
github.com/privacy-scaling-explorations/Nova

2023-07-25

0xPARC

19/19

https://eprint.iacr.org/2023/573
https://github.com/privacy-scaling-explorations/multifolding-poc
https://github.com/privacy-scaling-explorations/Nova
https://0xparc.org

	Preliminaries
	Nova
	HyperNova
	Wrappup

