# Bilinear Pairings - study 

arnaucube

August 2022


#### Abstract

Notes taken from Matan Prsma math seminars and also while reading about Bilinear Pairings. Usually while reading papers and books I take handwritten notes, this document contains some of them re-written to LaTeX.

The notes are not complete, don't include all the steps neither all the proofs. I use these notes to revisit the concepts after some time of reading the topic.


## Contents

1 Weil reciprocity 1
2 Generic Weil Pairing 1
2.1 Generic Weil Pairing . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Exercises 2

## 1 Weil reciprocity

## 2 Generic Weil Pairing

Def 2.1. Divisor

$$
D=\sum_{P \in E(\mathbb{K})} n_{p} \cdot[P]
$$

Def 2.2. Degree \& Sum

$$
\begin{gathered}
\operatorname{deg}(D)=\sum_{P \in E(\mathbb{K})} n_{p} \\
\operatorname{sum}(D)=\sum_{P \in E(\mathbb{K})} n_{p} \cdot P
\end{gathered}
$$

Def 2.3. Principal divisor iff $\operatorname{deg}(D)=0$ and $\operatorname{sum}(D)=0$
$D \sim D^{\prime}$ iff $D-D^{\prime}$ is principal.

Def 2.4. Evaluation of a rational function

$$
r(D)=\prod r(P)^{n_{p}}
$$

### 2.1 Generic Weil Pairing

Let $E(\mathbb{K})$, with $\mathbb{K}$ of char $p, n$ s.t. $p \nmid n$.
$\mathbb{K}$ large enough: $E(\mathbb{K})[n]=E(\overline{\mathbb{K}})=\mathbb{Z}_{n} \oplus \mathbb{Z}_{n}$ (with $n^{2}$ elements).
$P, Q \in E[n]:$

$$
\begin{aligned}
& D_{P} \sim[P]-[0] \\
& D_{Q} \sim[Q]-[0]
\end{aligned}
$$

We need them to have disjoint support:

$$
\begin{gathered}
D_{P} \sim[P]-[0] \\
D_{Q} \sim[Q+T]-[T] \\
\Delta D=D_{Q}-D_{Q}^{\prime}=[Q]-[0]-[Q+T]+[T]
\end{gathered}
$$

## 3 Exercises

An Introduction to Mathematical Cryptography, 2nd Edition - Section 6.8. Bilinear pairings on elliptic curves
6.29. $\operatorname{div}(R(x) \cdot S(x))=\operatorname{div}(R(x))+\operatorname{div}(S(x))$, where $R(x), S(x)$ are rational functions.
proof:
Norm of $f: N_{f}=f \cdot \bar{f}$, and we know that $N_{f g}=N_{f} \cdot N_{g} \forall \mathbb{K}[E]$, then

$$
\operatorname{deg}(f)=\operatorname{deg}_{x}\left(N_{f}\right)
$$

and

$$
\operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g)
$$

Proof:

$$
\begin{gathered}
\operatorname{deg}(f \cdot g)=\operatorname{deg}_{x}\left(N_{f g}\right)=\operatorname{deg}_{x}\left(N_{f} \cdot N_{g}\right) \\
=\operatorname{deg}_{x}\left(N_{f}\right)+\operatorname{deg}_{x}\left(N_{g}\right)=\operatorname{deg}(f)+\operatorname{deg}(g)
\end{gathered}
$$

So, $\forall P \in E(\mathbb{K}), \operatorname{ord}_{P}(r s)=\operatorname{ord}_{P}(r)+\operatorname{ord}_{P}(s)$. As $\operatorname{div}(r)=\sum_{P \in E(\mathbb{K})} \operatorname{ord}_{P}(r)[P], \operatorname{div}(s)=\sum \operatorname{ord}_{P}(s)[P]$.

So,

$$
\begin{gathered}
\operatorname{div}(r s)=\sum \operatorname{ord}_{P}(r s)[P] \\
=\sum \operatorname{ord}_{P}(r)[P]+\sum \operatorname{ord}_{P}(s)[P]=\operatorname{div}(r)+\operatorname{div}(s)
\end{gathered}
$$

6.31.

$$
e_{m}(P, Q)=e_{m}(Q, P)^{-1} \forall P, Q \in E[m]
$$

Proof: We know that $e_{m}(P, P)=1$, so:

$$
1=e_{m}(P+Q, P+Q)=e_{m}(P, P) \cdot e_{m}(P, Q) \cdot e_{m}(Q, P) \cdot e_{m}(Q, Q)
$$

and we know that $e_{m}(P, P)=1$, then we have:

$$
\begin{gathered}
1=e_{m}(P, Q) \cdot e_{m}(Q, P) \\
\Longrightarrow e_{m}(P, Q)=e_{m}(Q, P)^{-1}
\end{gathered}
$$

